Abstract
Automated Driving Systems (ADSs) commend a substantial reduction of human-caused road accidents while simultaneously lowering emissions, mitigating congestion, decreasing energy consumption and increasing overall productivity. However, achieving higher SAE levels of driving automation and complying with ISO26262 C and D Automotive Safety Integrity Levels (ASILs) is a multi-disciplinary challenge that requires insights into safety-critical architectures, multi-modal
perception and real-time control. This paper presents an assorted effort carried out in the European H2020 ECSEL project—PRYSTINE. In this paper, we (1) investigate Simplex, 1oo2d and hybrid fail-operational computing architectures, (2) devise a multi-modal perception system with fail-safety mechanisms, (3) present a passenger vehicle-based demonstrator for low-speed autonomy and (4) suggest a trust-based fusion approach validated on a heavy-duty truck.
perception and real-time control. This paper presents an assorted effort carried out in the European H2020 ECSEL project—PRYSTINE. In this paper, we (1) investigate Simplex, 1oo2d and hybrid fail-operational computing architectures, (2) devise a multi-modal perception system with fail-safety mechanisms, (3) present a passenger vehicle-based demonstrator for low-speed autonomy and (4) suggest a trust-based fusion approach validated on a heavy-duty truck.
Original language | English |
---|---|
Article number | 168 |
Journal | Applied Sciences |
Volume | 12 |
Issue number | 1 |
DOIs | |
Publication status | Published - Jan 2022 |
Keywords
- Architecture
- Autonomous driving
- Fail-operational
- Parking
- Perception
- Trust
ASJC Scopus subject areas
- Engineering(all)
- Instrumentation
- Materials Science(all)
- Fluid Flow and Transfer Processes
- Process Chemistry and Technology
- Computer Science Applications