TY - GEN
T1 - Determining the dielectric properties of a car tire for an advanced tire monitoring system
AU - Grosinger, Jasmin
AU - Mayer, Lukas W.
AU - Mecklenbr̈auker, Christoph F.
AU - Scholtz, Arpad L.
PY - 2009
Y1 - 2009
N2 - Conventional tire pressure monitoring systems (TPMS) measure the air pressure in each tire of a car with a sensor mounted on the rim. In future, advanced tire monitoring systems (ATMS) will measure additional data like tire temperature, contact area, vertical load, and slip angle. As a consequence, ATMS modules must be mounted directly at the tire tread. Furthermore, tire identification and lifecycle management via radio frequency identification (RFID) will be enabled. To design appropriate antennas for these applications, it is mandatory to investigate the interaction of antennas with the tire. Therefore we explore the tire structure and the dielectric material properties of the tire rubber. In this contribution the characterization of the dielectric tire materials using an open-ended coaxial probe is presented. We measure the reflection coefficients for each rubber tire layer and determine the relative permittivity and loss tangent by a numerical curve fitting method. The dielectric properties of each rubber layer are measured for a standard and a run-flat tire.
AB - Conventional tire pressure monitoring systems (TPMS) measure the air pressure in each tire of a car with a sensor mounted on the rim. In future, advanced tire monitoring systems (ATMS) will measure additional data like tire temperature, contact area, vertical load, and slip angle. As a consequence, ATMS modules must be mounted directly at the tire tread. Furthermore, tire identification and lifecycle management via radio frequency identification (RFID) will be enabled. To design appropriate antennas for these applications, it is mandatory to investigate the interaction of antennas with the tire. Therefore we explore the tire structure and the dielectric material properties of the tire rubber. In this contribution the characterization of the dielectric tire materials using an open-ended coaxial probe is presented. We measure the reflection coefficients for each rubber tire layer and determine the relative permittivity and loss tangent by a numerical curve fitting method. The dielectric properties of each rubber layer are measured for a standard and a run-flat tire.
UR - http://www.scopus.com/inward/record.url?scp=77951434117&partnerID=8YFLogxK
U2 - 10.1109/VETECF.2009.5379069
DO - 10.1109/VETECF.2009.5379069
M3 - Conference paper
AN - SCOPUS:77951434117
SN - 9781424425150
T3 - IEEE Vehicular Technology Conference
BT - Proceedings of the 2009 IEEE 70th Vehicular Technology Conference Fall, VTC 2009 Fall
T2 - 2009 IEEE 70th Vehicular Technology Conference Fall, VTC 2009 Fall
Y2 - 20 September 2009 through 23 September 2009
ER -