Determination of the Isotopic Enrichment of 13C- and 2H-Labeled Tracers of Glucose Using High-Resolution Mass Spectrometry: Application to Dual- and Triple-Tracer Studies

Martin Trötzmüller, Alexander Triebl, Amra Ajsic, Jürgen Hartler, Harald Köfeler, Werner Regittnig*

*Corresponding author for this work

    Research output: Contribution to journalArticlepeer-review

    Abstract

    Multiple-tracer approaches for investigating glucose metabolism in humans usually involve the administration of stable and radioactive glucose tracers and the subsequent determination of tracer enrichments in sampled blood. When using conventional, low-resolution mass spectrometry (LRMS), the number of spectral interferences rises rapidly with the number of stable tracers employed. Thus, in LRMS, both computational effort and statistical uncertainties associated with the correction for spectral interferences limit the number of stable tracers that can be simultaneously employed (usually two). Here we show that these limitations can be overcome by applying high-resolution mass spectrometry (HRMS). The HRMS method presented is based on the use of an Orbitrap mass spectrometer operated at a mass resolution of 100 000 to allow electrospray-generated ions of the deprotonated glucose molecules to be monitored at their exact masses. The tracer enrichment determination in blood plasma is demonstrated for several triple combinations of 13C- and 2H-labeled glucose tracers (e.g., [1-2H1]-, [6,6-2H2]-, [1,6-13C2]glucose). For each combination it is shown that ions arising from 2H-labeled tracers are completely differentiated from those arising from 13C-labeled tracers, thereby allowing the enrichment of a tracer to be simply calculated from the observed ion intensities using a standard curve with curve parameters unaffected by the presence of other tracers. For each tracer, the HRMS method exhibits low limits of detection and good repeatability in the tested 0.1-15.0% enrichment range. Additionally, due to short sample preparation and analysis times, the method is well-suited for high-throughput determination of multiple glucose tracer enrichments in plasma samples.

    Original languageEnglish
    Pages (from-to)12252-12260
    Number of pages9
    JournalAnalytical Chemistry
    Volume89
    Issue number22
    DOIs
    Publication statusPublished - 21 Nov 2017

    Keywords

    • Journal Article
    • Chromatography, Liquid
    • Reproducibility of Results
    • Mass spectrometry
    • High-throughput screening
    • Software
    • Metabolic Networks and Pathways
    • Tracer studies

    Fields of Expertise

    • Human- & Biotechnology
    • Information, Communication & Computing

    Treatment code (Nähere Zuordnung)

    • Application
    • Basic - Fundamental (Grundlagenforschung)

    Cooperations

    • BioTechMed-Graz

    Fingerprint

    Dive into the research topics of 'Determination of the Isotopic Enrichment of 13C- and 2H-Labeled Tracers of Glucose Using High-Resolution Mass Spectrometry: Application to Dual- and Triple-Tracer Studies'. Together they form a unique fingerprint.

    Cite this