Cut Vertices in Random Planar Graphs

Mihyun Kang, Michael Missethan*

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference paperpeer-review

Abstract

We denote by P(n, m) a graph chosen uniformly at random from the class of all vertex-labelled planar graphs on vertex set {1, …, n} with m= m(n) edges. We determine the asymptotic number of cut vertices in P(n, m) in the sparse regime. For comparison, we also derive the asymptotic number of cut vertices in the Erdős-Rényi random graph G(n, m).

Original languageEnglish
Title of host publicationExtended Abstracts EuroComb 2021
Subtitle of host publicationEuropean Conference on Combinatorics, Graph Theory and Applications
PublisherSpringer Science and Business Media Deutschland GmbH
Pages18-24
Number of pages7
ISBN (Electronic)978-3-030-83823-2
ISBN (Print)978-3-030-83822-5
DOIs
Publication statusPublished - 2021
EventEuropean Conference on Combinatorics, Graph Theory and Applications: EuroComb 2021 - Online, Virtual, Barcelona, Spain
Duration: 6 Sep 202110 Sep 2021

Publication series

NameTrends in Mathematics
Volume14
ISSN (Print)2297-0215
ISSN (Electronic)2297-024X

Conference

ConferenceEuropean Conference on Combinatorics, Graph Theory and Applications
Country/TerritorySpain
CityVirtual, Barcelona
Period6/09/2110/09/21

Keywords

  • Cut vertices
  • Random graphs
  • Random planar graphs

ASJC Scopus subject areas

  • Mathematics(all)

Fields of Expertise

  • Information, Communication & Computing

Fingerprint

Dive into the research topics of 'Cut Vertices in Random Planar Graphs'. Together they form a unique fingerprint.

Cite this