Chunk Reduction for Multi-Parameter Persistent Homology

Ulderico Fugacci, Michael Kerber

Research output: Contribution to conferencePaperResearchpeer-review

Abstract

The extension of persistent homology to multi-parameter setups is an algorithmic challenge. Since most computation tasks scale badly with the size of the input complex, an important pre-processing step consists of simplifying the input while maintaining the homological information. We present an algorithm that drastically reduces the size of an input. Our approach is an extension of the chunk algorithm for persistent homology (Bauer et al., Topological Methods in Data Analysis and Visualization III, 2014). We show that our construction produces the smallest multi-filtered chain complex among all the complexes quasi-isomorphic to the input, improving on the guarantees of previous work in the context of discrete Morse theory. Our algorithm also offers an immediate parallelization scheme in shared memory. Already its sequential version compares favorably with existing simplification schemes, as we show by experimental evaluation.
Original languageEnglish
Publication statusSubmitted - 2018

Fingerprint

Data visualization
Data storage equipment
Processing

Keywords

  • math.AT

Cite this

Chunk Reduction for Multi-Parameter Persistent Homology. / Fugacci, Ulderico; Kerber, Michael.

2018.

Research output: Contribution to conferencePaperResearchpeer-review

@conference{7eb3590827dd4e5bb1ff70f0bcad631e,
title = "Chunk Reduction for Multi-Parameter Persistent Homology",
abstract = "The extension of persistent homology to multi-parameter setups is an algorithmic challenge. Since most computation tasks scale badly with the size of the input complex, an important pre-processing step consists of simplifying the input while maintaining the homological information. We present an algorithm that drastically reduces the size of an input. Our approach is an extension of the chunk algorithm for persistent homology (Bauer et al., Topological Methods in Data Analysis and Visualization III, 2014). We show that our construction produces the smallest multi-filtered chain complex among all the complexes quasi-isomorphic to the input, improving on the guarantees of previous work in the context of discrete Morse theory. Our algorithm also offers an immediate parallelization scheme in shared memory. Already its sequential version compares favorably with existing simplification schemes, as we show by experimental evaluation.",
keywords = "math.AT",
author = "Ulderico Fugacci and Michael Kerber",
year = "2018",
language = "English",

}

TY - CONF

T1 - Chunk Reduction for Multi-Parameter Persistent Homology

AU - Fugacci, Ulderico

AU - Kerber, Michael

PY - 2018

Y1 - 2018

N2 - The extension of persistent homology to multi-parameter setups is an algorithmic challenge. Since most computation tasks scale badly with the size of the input complex, an important pre-processing step consists of simplifying the input while maintaining the homological information. We present an algorithm that drastically reduces the size of an input. Our approach is an extension of the chunk algorithm for persistent homology (Bauer et al., Topological Methods in Data Analysis and Visualization III, 2014). We show that our construction produces the smallest multi-filtered chain complex among all the complexes quasi-isomorphic to the input, improving on the guarantees of previous work in the context of discrete Morse theory. Our algorithm also offers an immediate parallelization scheme in shared memory. Already its sequential version compares favorably with existing simplification schemes, as we show by experimental evaluation.

AB - The extension of persistent homology to multi-parameter setups is an algorithmic challenge. Since most computation tasks scale badly with the size of the input complex, an important pre-processing step consists of simplifying the input while maintaining the homological information. We present an algorithm that drastically reduces the size of an input. Our approach is an extension of the chunk algorithm for persistent homology (Bauer et al., Topological Methods in Data Analysis and Visualization III, 2014). We show that our construction produces the smallest multi-filtered chain complex among all the complexes quasi-isomorphic to the input, improving on the guarantees of previous work in the context of discrete Morse theory. Our algorithm also offers an immediate parallelization scheme in shared memory. Already its sequential version compares favorably with existing simplification schemes, as we show by experimental evaluation.

KW - math.AT

M3 - Paper

ER -