Benchmark data for verifying background model implementations in orbit and gravity field determination software

Martin Lasser*, Ulrich Meyer, Adrian Jäggi, Torsten Mayer-Gürr, Andreas Kvas, Karl-Hans Neumayer, Christoph Dahle, Frank Flechtner, Jean-Michel Lemoine, Igor Koch, Matthias Weigelt, Jakob Flury

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

In the framework of the COmbination Service for Time-variable Gravity fields (COST-G) gravity field solutions from different analysis centres are combined to provide a consolidated solution of improved quality and robustness to the user. As in many other satellite-related sciences, the correct application of background models plays a crucial role in gravity field determination. Therefore, we publish a set of data of various commonly used forces in orbit and gravity field modelling (Earth's gravity field, tides etc.) evaluated along a one day orbit arc of GRACE, together with auxiliary data to enable easy comparisons. The benchmark data is compiled with the GROOPS software by the Institute of Geodesy (IfG) at Graz University of Technology. It is intended to be used as a reference data set and provides the opportunity to test the implementation of these models at various institutions involved in orbit and gravity field determination from satellite tracking data. In view of the COST-G GRACE and GRACE Follow-On gravity field combinations, we document the outcome of the comparison of the background force models for the Bernese GNSS software from AIUB (Astronomical Institute, University of Bern), the EPOS software of the German Research Centre for Geosciences (GFZ), the GINS software, developed and maintained by the Groupe de Recherche de Géodésie Spatiale (GRGS), the GRACE-SIGMA software of the Leibniz University of Hannover (LUH) and the GRASP software also developed at LUH. We consider differences in the force modelling for GRACE (-FO) which are one order of magnitude smaller than the accelerometer noise of about 10−10 m s−2 to be negligible and formulate this as a benchmark for new analysis centres, which are interested to contribute to the COST-G initiative.
Original languageEnglish
Article number1
Pages (from-to)1-11
Number of pages11
JournalAdvances in Geosciences
Volume55
DOIs
Publication statusPublished - 17 Dec 2020

ASJC Scopus subject areas

  • Earth and Planetary Sciences (miscellaneous)
  • Space and Planetary Science

Fields of Expertise

  • Sustainable Systems

Fingerprint

Dive into the research topics of 'Benchmark data for verifying background model implementations in orbit and gravity field determination software'. Together they form a unique fingerprint.

Cite this