Automated Inspection of Power Line Corridors to Measure Vegetation Undercut using UAV-based Images

Michael Maurer, Manuel Hofer, Friedrich Fraundorfer, Horst Bischof

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Power line corridor inspection is a time consuming task that is performed mostly manually. As the development of UAVs made huge progress in recent years, and photogrammetric computer vision systems became well established, it is time to further automate inspection tasks. In this paper we present an automated processing pipeline to inspect vegetation undercuts of power line corridors. For this, the area of inspection is reconstructed, geo-referenced, semantically segmented and inter class distance measurements are calculated. The presented pipeline performs an automated selection of the proper 3D reconstruction method for on the one hand wiry (power line), and on the other hand solid objects (surrounding). The automated selection is realized by performing pixel-wise semantic segmentation of the input images using a Fully Convolutional Neural Network. Due to the geo-referenced semantic 3D reconstructions a documentation of areas where maintenance work has to be performed is inherently included in the distance measurements and can be extracted easily. We evaluate the influence of the semantic segmentation according to the 3D reconstruction and show that the automated semantic separation in wiry and dense objects of the 3D reconstruction routine improves the quality of the vegetation undercut inspection. We show the generalization of the semantic segmentation to datasets acquired using different acquisition routines and to varied seasons in time.
LanguageEnglish
Title of host publicationInternational Conference on Unmanned Aerial Vehicles in Geomatics
PublisherInternational Society for Photogrammetry and Remote Sensing
StatusPublished - Sep 2017

Fingerprint

Unmanned aerial vehicles (UAV)
Inspection
Semantics
Distance measurement
Pipelines
Reconstruction (structural)
Computer vision
Pixels
Neural networks
Processing

Cite this

Maurer, M., Hofer, M., Fraundorfer, F., & Bischof, H. (2017). Automated Inspection of Power Line Corridors to Measure Vegetation Undercut using UAV-based Images. In International Conference on Unmanned Aerial Vehicles in Geomatics International Society for Photogrammetry and Remote Sensing .

Automated Inspection of Power Line Corridors to Measure Vegetation Undercut using UAV-based Images. / Maurer, Michael; Hofer, Manuel; Fraundorfer, Friedrich; Bischof, Horst.

International Conference on Unmanned Aerial Vehicles in Geomatics. International Society for Photogrammetry and Remote Sensing , 2017.

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Maurer, M, Hofer, M, Fraundorfer, F & Bischof, H 2017, Automated Inspection of Power Line Corridors to Measure Vegetation Undercut using UAV-based Images. in International Conference on Unmanned Aerial Vehicles in Geomatics. International Society for Photogrammetry and Remote Sensing .
Maurer M, Hofer M, Fraundorfer F, Bischof H. Automated Inspection of Power Line Corridors to Measure Vegetation Undercut using UAV-based Images. In International Conference on Unmanned Aerial Vehicles in Geomatics. International Society for Photogrammetry and Remote Sensing . 2017.
Maurer, Michael ; Hofer, Manuel ; Fraundorfer, Friedrich ; Bischof, Horst. / Automated Inspection of Power Line Corridors to Measure Vegetation Undercut using UAV-based Images. International Conference on Unmanned Aerial Vehicles in Geomatics. International Society for Photogrammetry and Remote Sensing , 2017.
@inproceedings{d5e09a4bc70c4d709724e6865983af78,
title = "Automated Inspection of Power Line Corridors to Measure Vegetation Undercut using UAV-based Images",
abstract = "Power line corridor inspection is a time consuming task that is performed mostly manually. As the development of UAVs made huge progress in recent years, and photogrammetric computer vision systems became well established, it is time to further automate inspection tasks. In this paper we present an automated processing pipeline to inspect vegetation undercuts of power line corridors. For this, the area of inspection is reconstructed, geo-referenced, semantically segmented and inter class distance measurements are calculated. The presented pipeline performs an automated selection of the proper 3D reconstruction method for on the one hand wiry (power line), and on the other hand solid objects (surrounding). The automated selection is realized by performing pixel-wise semantic segmentation of the input images using a Fully Convolutional Neural Network. Due to the geo-referenced semantic 3D reconstructions a documentation of areas where maintenance work has to be performed is inherently included in the distance measurements and can be extracted easily. We evaluate the influence of the semantic segmentation according to the 3D reconstruction and show that the automated semantic separation in wiry and dense objects of the 3D reconstruction routine improves the quality of the vegetation undercut inspection. We show the generalization of the semantic segmentation to datasets acquired using different acquisition routines and to varied seasons in time.",
author = "Michael Maurer and Manuel Hofer and Friedrich Fraundorfer and Horst Bischof",
year = "2017",
month = "9",
language = "English",
booktitle = "International Conference on Unmanned Aerial Vehicles in Geomatics",
publisher = "International Society for Photogrammetry and Remote Sensing",

}

TY - GEN

T1 - Automated Inspection of Power Line Corridors to Measure Vegetation Undercut using UAV-based Images

AU - Maurer,Michael

AU - Hofer,Manuel

AU - Fraundorfer,Friedrich

AU - Bischof,Horst

PY - 2017/9

Y1 - 2017/9

N2 - Power line corridor inspection is a time consuming task that is performed mostly manually. As the development of UAVs made huge progress in recent years, and photogrammetric computer vision systems became well established, it is time to further automate inspection tasks. In this paper we present an automated processing pipeline to inspect vegetation undercuts of power line corridors. For this, the area of inspection is reconstructed, geo-referenced, semantically segmented and inter class distance measurements are calculated. The presented pipeline performs an automated selection of the proper 3D reconstruction method for on the one hand wiry (power line), and on the other hand solid objects (surrounding). The automated selection is realized by performing pixel-wise semantic segmentation of the input images using a Fully Convolutional Neural Network. Due to the geo-referenced semantic 3D reconstructions a documentation of areas where maintenance work has to be performed is inherently included in the distance measurements and can be extracted easily. We evaluate the influence of the semantic segmentation according to the 3D reconstruction and show that the automated semantic separation in wiry and dense objects of the 3D reconstruction routine improves the quality of the vegetation undercut inspection. We show the generalization of the semantic segmentation to datasets acquired using different acquisition routines and to varied seasons in time.

AB - Power line corridor inspection is a time consuming task that is performed mostly manually. As the development of UAVs made huge progress in recent years, and photogrammetric computer vision systems became well established, it is time to further automate inspection tasks. In this paper we present an automated processing pipeline to inspect vegetation undercuts of power line corridors. For this, the area of inspection is reconstructed, geo-referenced, semantically segmented and inter class distance measurements are calculated. The presented pipeline performs an automated selection of the proper 3D reconstruction method for on the one hand wiry (power line), and on the other hand solid objects (surrounding). The automated selection is realized by performing pixel-wise semantic segmentation of the input images using a Fully Convolutional Neural Network. Due to the geo-referenced semantic 3D reconstructions a documentation of areas where maintenance work has to be performed is inherently included in the distance measurements and can be extracted easily. We evaluate the influence of the semantic segmentation according to the 3D reconstruction and show that the automated semantic separation in wiry and dense objects of the 3D reconstruction routine improves the quality of the vegetation undercut inspection. We show the generalization of the semantic segmentation to datasets acquired using different acquisition routines and to varied seasons in time.

M3 - Conference contribution

BT - International Conference on Unmanned Aerial Vehicles in Geomatics

PB - International Society for Photogrammetry and Remote Sensing

ER -