Anytime Diagnosis for Reconfiguration

Alexander Felfernig, Rouven Walter, Jose Galindo, David Benavides, Seda Polat Erdeniz, Müslüm Atas, Stefan Reiterer

Research output: Contribution to journalArticleResearchpeer-review

Abstract

Many domains require scalable algorithms that help to determine diagnoses efficiently and often within predefined time limits. Anytime diagnosis is able to determine solutions in such a way and thus is especially useful in real-time scenarios such as production scheduling, robot control, and communication networks management where diagnosis and corresponding reconfiguration capabilities play a major role. Anytime diagnosis in many cases comes along with a trade-off between diagnosis quality and the efficiency of diagnostic reasoning. In this paper we introduce and analyze FlexDiag which is an anytime direct diagnosis approach. We evaluate the algorithm with regard to performance and diagnosis quality using a configuration benchmark from the domain of feature models and an industrial configuration knowledge base from the automotive domain. Results show that FlexDiag helps to significantly increase the performance of direct diagnosis search with corresponding quality tradeoffs in terms of minimality and accuracy.
Translated title of the contributionAnytime Diagnose für Rekonfiguration
Original languageEnglish
Pages (from-to)1-22
Number of pages22
JournalJournal of Intelligent Information Systems
DOIs
Publication statusE-pub ahead of print - 1 Jan 2018

Fingerprint

Network management
Telecommunication networks
Scheduling
Robots

Keywords

  • Anytime diagnosis
  • Reconfiguration

Cite this

Anytime Diagnosis for Reconfiguration. / Felfernig, Alexander; Walter, Rouven; Galindo, Jose; Benavides, David; Polat Erdeniz, Seda; Atas, Müslüm; Reiterer, Stefan.

In: Journal of Intelligent Information Systems, 01.01.2018, p. 1-22.

Research output: Contribution to journalArticleResearchpeer-review

Felfernig, Alexander ; Walter, Rouven ; Galindo, Jose ; Benavides, David ; Polat Erdeniz, Seda ; Atas, Müslüm ; Reiterer, Stefan. / Anytime Diagnosis for Reconfiguration. In: Journal of Intelligent Information Systems. 2018 ; pp. 1-22.
@article{51ae4e78673446f08e35fdffac88dded,
title = "Anytime Diagnosis for Reconfiguration",
abstract = "Many domains require scalable algorithms that help to determine diagnoses efficiently and often within predefined time limits. Anytime diagnosis is able to determine solutions in such a way and thus is especially useful in real-time scenarios such as production scheduling, robot control, and communication networks management where diagnosis and corresponding reconfiguration capabilities play a major role. Anytime diagnosis in many cases comes along with a trade-off between diagnosis quality and the efficiency of diagnostic reasoning. In this paper we introduce and analyze FlexDiag which is an anytime direct diagnosis approach. We evaluate the algorithm with regard to performance and diagnosis quality using a configuration benchmark from the domain of feature models and an industrial configuration knowledge base from the automotive domain. Results show that FlexDiag helps to significantly increase the performance of direct diagnosis search with corresponding quality tradeoffs in terms of minimality and accuracy.",
keywords = "Anytime diagnosis, Reconfiguration",
author = "Alexander Felfernig and Rouven Walter and Jose Galindo and David Benavides and {Polat Erdeniz}, Seda and M{\"u}sl{\"u}m Atas and Stefan Reiterer",
year = "2018",
month = "1",
day = "1",
doi = "10.1007/s10844-017-0492-1",
language = "English",
pages = "1--22",
journal = "Journal of Intelligent Information Systems",
issn = "0925-9902",
publisher = "Springer International Publishing AG",

}

TY - JOUR

T1 - Anytime Diagnosis for Reconfiguration

AU - Felfernig, Alexander

AU - Walter, Rouven

AU - Galindo, Jose

AU - Benavides, David

AU - Polat Erdeniz, Seda

AU - Atas, Müslüm

AU - Reiterer, Stefan

PY - 2018/1/1

Y1 - 2018/1/1

N2 - Many domains require scalable algorithms that help to determine diagnoses efficiently and often within predefined time limits. Anytime diagnosis is able to determine solutions in such a way and thus is especially useful in real-time scenarios such as production scheduling, robot control, and communication networks management where diagnosis and corresponding reconfiguration capabilities play a major role. Anytime diagnosis in many cases comes along with a trade-off between diagnosis quality and the efficiency of diagnostic reasoning. In this paper we introduce and analyze FlexDiag which is an anytime direct diagnosis approach. We evaluate the algorithm with regard to performance and diagnosis quality using a configuration benchmark from the domain of feature models and an industrial configuration knowledge base from the automotive domain. Results show that FlexDiag helps to significantly increase the performance of direct diagnosis search with corresponding quality tradeoffs in terms of minimality and accuracy.

AB - Many domains require scalable algorithms that help to determine diagnoses efficiently and often within predefined time limits. Anytime diagnosis is able to determine solutions in such a way and thus is especially useful in real-time scenarios such as production scheduling, robot control, and communication networks management where diagnosis and corresponding reconfiguration capabilities play a major role. Anytime diagnosis in many cases comes along with a trade-off between diagnosis quality and the efficiency of diagnostic reasoning. In this paper we introduce and analyze FlexDiag which is an anytime direct diagnosis approach. We evaluate the algorithm with regard to performance and diagnosis quality using a configuration benchmark from the domain of feature models and an industrial configuration knowledge base from the automotive domain. Results show that FlexDiag helps to significantly increase the performance of direct diagnosis search with corresponding quality tradeoffs in terms of minimality and accuracy.

KW - Anytime diagnosis

KW - Reconfiguration

U2 - 10.1007/s10844-017-0492-1

DO - 10.1007/s10844-017-0492-1

M3 - Article

SP - 1

EP - 22

JO - Journal of Intelligent Information Systems

JF - Journal of Intelligent Information Systems

SN - 0925-9902

ER -