Advanced data mining for process optimizations and use of ai to predict refractory wear and to analyze refractory behavior

Gregor Lammer, Ronald Lanzenberger, Andreas Rom, Ashraf Hanna, Manuel Forrer, Markus Feuerstein, Franz Pernkopf, Nikolaus Mutsam

Research output: Contribution to journalArticle

Abstract

This paper presents an approach to discover patterns in big data sets and applying methods of artificial intelligence (AI) for interpretation. The paper will present the use of AI to identify the main refractory wear mechanism in the hot spots and to predict the refractory behavior. Further, this intelligent system is applied to analyze and compare different maintenance philosophies. As an example of the impact on daily operations in steel plants, a daily report is presented, which provides all the necessary key information when a refractory-related decision is to be made. The paper also examines and discusses the operational impact and future applications.

Original languageEnglish
Pages (from-to)52-60
Number of pages9
JournalIron & Steel Technology
Volume15
Issue number9
Publication statusPublished - 1 Sep 2018

ASJC Scopus subject areas

  • Mechanics of Materials
  • Mechanical Engineering
  • Metals and Alloys
  • Materials Chemistry

Fingerprint Dive into the research topics of 'Advanced data mining for process optimizations and use of ai to predict refractory wear and to analyze refractory behavior'. Together they form a unique fingerprint.

Cite this