Adhesion properties of hydrogen on Sb(111) probed by helium atom scattering

P. Kraus, C. Gösweiner, A. Tamtögl, F. Apolloner, W. E. Ernst

Research output: Contribution to journalArticleResearchpeer-review

Abstract

We have carried out a series of helium atom scattering measurements in order to characterise the adsorption properties of hydrogen on antimony(111). Molecular hydrogen does not adsorb at temperatures above 110 K in contrast to pre-dissociated atomic hydrogen. Depending on the substrate temperature, two different adlayer phases of atomic hydrogen on Sb(111) occur. At low substrate temperatures (110 K), the deposited hydrogen layer does not show any ordering while we observe a perfectly ordered $(1\times 1)$ H/Sb(111) structure for deposition at room temperature. Furthermore, the amorphous hydrogen layer deposited at low temperature forms an ordered overlayer upon heating the crystal to room temperature. Hydrogen starts to desorb at $T_m = 430\ \text{K}$ which corresponds to a desorption energy of $E_{des}=(1.33\pm0.06)\ \text{eV}$ . Using measurements of the helium reflectivity during hydrogen exposure at different surface temperatures, we conclude that the initial sticking coefficient of atomic hydrogen on Sb(111) decreases with increasing surface temperature. Furthermore, the scattering cross-section for the diffuse scattering of helium from hydrogen on Sb(111) is determined as $\Sigma = (12 \pm 1)\ \unicode{8491}^{2}$ .
Original languageEnglish
Article number56001
JournalEurophysics letters
Volume114
Issue number5
Publication statusPublished - 28 Jun 2016

Fingerprint

helium atoms
adhesion
hydrogen
scattering
surface temperature
helium
room temperature
antimony
scattering cross sections
temperature
desorption
reflectance
adsorption
heating

Keywords

  • Adsorption
  • Atom scattering
  • Atom surface interaction
  • Hydrogen
  • Semimetal

ASJC Scopus subject areas

  • Surfaces and Interfaces

Fields of Expertise

  • Advanced Materials Science

Cite this

Adhesion properties of hydrogen on Sb(111) probed by helium atom scattering. / Kraus, P.; Gösweiner, C.; Tamtögl, A.; Apolloner, F.; Ernst, W. E.

In: Europhysics letters, Vol. 114, No. 5, 56001, 28.06.2016.

Research output: Contribution to journalArticleResearchpeer-review

@article{83010c666f06430b8ea1d20a96b7248a,
title = "Adhesion properties of hydrogen on Sb(111) probed by helium atom scattering",
abstract = "We have carried out a series of helium atom scattering measurements in order to characterise the adsorption properties of hydrogen on antimony(111). Molecular hydrogen does not adsorb at temperatures above 110 K in contrast to pre-dissociated atomic hydrogen. Depending on the substrate temperature, two different adlayer phases of atomic hydrogen on Sb(111) occur. At low substrate temperatures (110 K), the deposited hydrogen layer does not show any ordering while we observe a perfectly ordered $(1\times 1)$ H/Sb(111) structure for deposition at room temperature. Furthermore, the amorphous hydrogen layer deposited at low temperature forms an ordered overlayer upon heating the crystal to room temperature. Hydrogen starts to desorb at $T_m = 430\ \text{K}$ which corresponds to a desorption energy of $E_{des}=(1.33\pm0.06)\ \text{eV}$ . Using measurements of the helium reflectivity during hydrogen exposure at different surface temperatures, we conclude that the initial sticking coefficient of atomic hydrogen on Sb(111) decreases with increasing surface temperature. Furthermore, the scattering cross-section for the diffuse scattering of helium from hydrogen on Sb(111) is determined as $\Sigma = (12 \pm 1)\ \unicode{8491}^{2}$ .",
keywords = "Adsorption, Atom scattering, Atom surface interaction, Hydrogen, Semimetal",
author = "P. Kraus and C. G{\"o}sweiner and A. Tamt{\"o}gl and F. Apolloner and Ernst, {W. E.}",
year = "2016",
month = "6",
day = "28",
language = "English",
volume = "114",
journal = "Europhysics letters",
issn = "0295-5075",
publisher = "IOP Publishing Ltd.",
number = "5",

}

TY - JOUR

T1 - Adhesion properties of hydrogen on Sb(111) probed by helium atom scattering

AU - Kraus, P.

AU - Gösweiner, C.

AU - Tamtögl, A.

AU - Apolloner, F.

AU - Ernst, W. E.

PY - 2016/6/28

Y1 - 2016/6/28

N2 - We have carried out a series of helium atom scattering measurements in order to characterise the adsorption properties of hydrogen on antimony(111). Molecular hydrogen does not adsorb at temperatures above 110 K in contrast to pre-dissociated atomic hydrogen. Depending on the substrate temperature, two different adlayer phases of atomic hydrogen on Sb(111) occur. At low substrate temperatures (110 K), the deposited hydrogen layer does not show any ordering while we observe a perfectly ordered $(1\times 1)$ H/Sb(111) structure for deposition at room temperature. Furthermore, the amorphous hydrogen layer deposited at low temperature forms an ordered overlayer upon heating the crystal to room temperature. Hydrogen starts to desorb at $T_m = 430\ \text{K}$ which corresponds to a desorption energy of $E_{des}=(1.33\pm0.06)\ \text{eV}$ . Using measurements of the helium reflectivity during hydrogen exposure at different surface temperatures, we conclude that the initial sticking coefficient of atomic hydrogen on Sb(111) decreases with increasing surface temperature. Furthermore, the scattering cross-section for the diffuse scattering of helium from hydrogen on Sb(111) is determined as $\Sigma = (12 \pm 1)\ \unicode{8491}^{2}$ .

AB - We have carried out a series of helium atom scattering measurements in order to characterise the adsorption properties of hydrogen on antimony(111). Molecular hydrogen does not adsorb at temperatures above 110 K in contrast to pre-dissociated atomic hydrogen. Depending on the substrate temperature, two different adlayer phases of atomic hydrogen on Sb(111) occur. At low substrate temperatures (110 K), the deposited hydrogen layer does not show any ordering while we observe a perfectly ordered $(1\times 1)$ H/Sb(111) structure for deposition at room temperature. Furthermore, the amorphous hydrogen layer deposited at low temperature forms an ordered overlayer upon heating the crystal to room temperature. Hydrogen starts to desorb at $T_m = 430\ \text{K}$ which corresponds to a desorption energy of $E_{des}=(1.33\pm0.06)\ \text{eV}$ . Using measurements of the helium reflectivity during hydrogen exposure at different surface temperatures, we conclude that the initial sticking coefficient of atomic hydrogen on Sb(111) decreases with increasing surface temperature. Furthermore, the scattering cross-section for the diffuse scattering of helium from hydrogen on Sb(111) is determined as $\Sigma = (12 \pm 1)\ \unicode{8491}^{2}$ .

KW - Adsorption

KW - Atom scattering

KW - Atom surface interaction

KW - Hydrogen

KW - Semimetal

M3 - Article

VL - 114

JO - Europhysics letters

JF - Europhysics letters

SN - 0295-5075

IS - 5

M1 - 56001

ER -