A Review of Depth and Normal Fusion Algorithms

D. Antensteiner*, S. Stolc, Thomas Pock

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review


Geometric surface information such as depth maps and surface normals can be acquired by various methods such as stereo light fields, shape from shading and photometric stereo techniques. We compare several algorithms which deal with the combination of depth with surface normal information in order to reconstruct a refined depth map. The reasons for performance differences are examined from the perspective of alternative formulations of surface normals for depth reconstruction. We review and analyze methods in a systematic way. Based on our findings, we introduce a new generalized fusion method, which is formulated as a least squares problem and outperforms previous methods in the depth error domain by introducing a novel normal weighting that performs closer to the geodesic distance measure. Furthermore, a novel method is introduced based on Total Generalized Variation (TGV) which further outperforms previous approaches in terms of the geodesic normal distance error and maintains comparable quality in the depth error domain.
Original languageEnglish
Article number431
Issue number2
Publication statusPublished - 2018


Dive into the research topics of 'A Review of Depth and Normal Fusion Algorithms'. Together they form a unique fingerprint.

Cite this