A biobased, bioactive, low CO2 impact coating for soil improvers

Renate Weiß, Sebastian Gritsch, Günter Brader, Branislav Nikolic, Marc Spiller, Julia Santolin, Hedda K. Weber, Nikolaus Schwaiger, Sylvain Pluchon, Kristin Dietel, Georg Gübitz, Gibson Nyanhongo

Research output: Contribution to journalArticlepeer-review


Lignosulfonate-based bioactive coatings as soil improvers for lawns were developed using laccase as a biocatalyst. Incorporation of glycerol, xylitol and sorbitol as plasticizers considerably reduced the brittleness of the synthesized coatings of marine carbonate granules while thermal enzyme inactivation at 100 °C enabled the production of stable coatings. Heat inactivation produced stable coatings with a molecular weight of 2000 kDa and a viscosity of 4.5 × 10-3 Pas. The desired plasticity for the spray coating of soil improver granules was achieved by the addition of 2.7% of xylitol. Agriculture beneficial microorganisms (four different Bacillus species) were integrated into the coatings. The stable coatings protected the marine calcium carbonate granules, maintained the viability of the microorganisms and showed no toxic effects on the germination and growth of model plants including corn, wheat, salad, and tomato despite a slight delay in germination. Moreover, the coatings reduced the dust formation of soil improvers by 70%. CO2 emission analysis showed potential for the reduction of up to 3.4 kg CO2-eq. kg-1 product, making it a viable alternative to fossil-based coatings.

Original languageEnglish
Pages (from-to)6501-6514
Number of pages14
JournalGreen Chemistry
Issue number17
Publication statusPublished - 7 Sep 2021
Externally publishedYes

ASJC Scopus subject areas

  • Pollution
  • Environmental Chemistry


Dive into the research topics of 'A biobased, bioactive, low CO2 impact coating for soil improvers'. Together they form a unique fingerprint.

Cite this