Research output per year
Research output per year
Project: Research project
In many fields of engineering combinations of several materials has to be used to achieve the required behavior. In particular, the sound insulation of a structure is normally obtained by attaching some porous layers to the solid structure which carries the load. Examples are walls of buildings, the engine hood in a car, or the side wall of an aircraft. The latter will serve in this project as model problem because it essentially covers all aspects of such a construction.
Different to a composite plate, here, clearly identifiable layers are considered where the connection between them vary from tight to loose or it is simply an air gap. Hence, not only the plate itself also the coupling has to be considered. Additionally, to describe the sound damping effect of the porous structure, it has to be coupled to the surrounding fluid.
The aim is to simulate the acoustic behavior of a layered plate like structure.
All the classical plate theories, which are widely used in technical applications, like the Kirchhoff, Mindlin or Reissner plate theories, have in common, that they all need some a priori assumptions regarding the distribution of either displacements or stresses in thickness direction.
A theory which does not need such a priori assumptions has been proposed by Kienzler [4]. Starting from the general formulation of threedimensional linear elasticity, all the above mentioned unknown distribitions are approximated over the plate thickness using a series expansion. Depending on where the series is truncated, the Kirchhoff theory or a theory very similar to the one of Reissner can be derived. Due to the series expansion the order of derivable theories has no limit.
For the development of poroelastic plate theories the threedimensional poroelasticity of M.A.Biot can be used [3]. So did D.D.Theodorakopoulos und D.E.Beskos, who proposed a poroelastic Kirchhoff plate [1]. Poroelastic theories of higher order can also be found in the literature.
A first step in developing 'consistent poroelastic plate theories' using Kienzlers ansatz has been taken by A. Busse and M. Schanz [2].
Finally, the numerical simulation tool will be validated by experiments in cooperation with Prof. O. v. Estorff, Hamburg University of Technology (TU HH).
Status | Finished |
---|---|
Effective start/end date | 1/02/07 → 1/05/12 |
Research output: Contribution to journal › Article › peer-review
Research output: Contribution to conference › (Old data) Lecture or Presentation
Research output: Contribution to journal › Article