Currently, numerical multi-physics models which can reliably predict the crash performance of lithium-ion traction battery cells for vehicles are not available. Such models are able to determine hazard levels and the maximum permissible deformation that will not lead to a thermal runaway. This knowledge is crucial for vehicle weight reduction and increased range, as the traction batteries can be located within typical crash deformation areas. Such models allow for sensitivity analysis in terms of battery and cell architecture as a basis for enhanced battery crash safety. A numerical multi-physics cell model will open up radically new approaches for vehicle structures.