Robert Legenstein

Assoc.Prof. Dipl.-Ing. Dr.techn.

19992022
If you made any changes in Pure these will be visible here soon.

Research Output 1999 2018

Filter
Conference contribution
2018

Long short-term memory and learning-to-learn in networks of spiking neurons

Bellec, G. E. F., Salaj, D., Subramoney, A., Legenstein, R. & Maass, W., 2018, Advances in Neural Information Processing Systems: NeurIPS.

Research output: Chapter in Book/Report/Conference proceedingConference contributionResearchpeer-review

Long Term Memory and the Densest K-Subgraph Problem

Legenstein, R., Maass, W., Papapdimitriou, C. H. & Vempala, S. S., 2018, 9th Innovations in Theoretical Computer Science Conference (ITCS 2018). Schloss Dagstuhl - Leibniz-Zentrum für Informatik GmbH, Vol. 94. p. 57:1–57:15 57. (LIPIcs-Leibniz International Proceedings in Informatics ).

Research output: Chapter in Book/Report/Conference proceedingConference contributionResearchpeer-review

Data storage equipment
Graph theory
Plasticity
Experiments
2015

Synaptic sampling: A Bayesian approach to neural network plasticity and rewiring

Kappel, D., Habenschuss, S., Legenstein, R. & Maass, W., 2015, (Accepted/In press) Proceedings of NIPS. .

Research output: Chapter in Book/Report/Conference proceedingConference contributionResearchpeer-review

Plasticity
Sampling
Neural networks
Maximum likelihood
Brain
2011

Dendritic computation could support probabilistic inference in networks of spiking neurons

Legenstein, R., 2011, Abstracts Annual Meeting. ., p. 1-1

Research output: Chapter in Book/Report/Conference proceedingConference contributionResearch

Eliminating the teacher in reservoir computing

Hörzer, G. M., Legenstein, R. & Maass, W., 2011, Proceedings of the 2nd International Conference on Morphological Computation. ., p. 32-32

Research output: Chapter in Book/Report/Conference proceedingConference contributionResearchpeer-review

2010

Combining predictions for accurate recommender systems

Legenstein, R., 2010, Proceedings of the 16th ACM SIGKDD international conference on Knowledge discovery and data mining. ., p. 693-702

Research output: Chapter in Book/Report/Conference proceedingConference contributionResearchpeer-review

Functional network reorganization in motor cortex can be explained by reward-modulated Hebbian learning

Legenstein, R., Chase, S., Schwartz, A. B. & Maass, W., 2010, Proc. of NIPS 2009, Advances in Neural Information Processing Systems. MIT Press, p. 1105-1113

Research output: Chapter in Book/Report/Conference proceedingConference contributionResearchpeer-review

2009

On Computational Power and the Order-Chaos Phase Transition in Reservoir Computing

Schrauwen, B., Büsing, L. H. & Legenstein, R., 2009, (Accepted/In press) Annual Conference on Neural Information Processing Systems. .

Research output: Chapter in Book/Report/Conference proceedingConference contributionResearchpeer-review

2008

A model for learning effects in motor cortex that may facilitate the brain control of neuroprosthetic devices

Legenstein, R., Chase, S. M., Schwartz, A. B. & Maass, W., 2008, (Accepted/In press) 2008 Neuroscience Meeting Planner, Online. .

Research output: Chapter in Book/Report/Conference proceedingConference contributionResearchpeer-review

Improved neighborhood-based algorithms for large-scale recommender systems

Legenstein, R., 2008, (Accepted/In press) KDD-Cup and Workshop. ACM, 2008. .

Research output: Chapter in Book/Report/Conference proceedingConference contributionResearchpeer-review

Theoretical analysis of learning with reward-modulated spike-timing-dependent plasticity

Legenstein, R. A., Pecevski, D. & Maass, W., 2008, (Accepted/In press) Proc. of NIPS 2007, Advances in Neural Information Processing Systems. ., Vol. 20.

Research output: Chapter in Book/Report/Conference proceedingConference contributionResearchpeer-review

2007

Information Bottleneck Optimization and Independent Component Extraction with Spiking Neurons

Klampfl, S., Legenstein, R. A. & Maass, W., 2007, Advances in Neural Information Processing Systems. Cambridge, MA: MIT Press, p. 713-720

Research output: Chapter in Book/Report/Conference proceedingConference contributionResearchpeer-review

Open Access
File
2006

A criterion for the convergence of learning with spike timing dependent plasticity

Legenstein, R. A. & Maass, W., 2006, Advances in Neural Information Processing Systems. MIT Press, p. 763-770

Research output: Chapter in Book/Report/Conference proceedingConference contributionResearchpeer-review

2005

At the edge of chaos: Real-time computations and self-organized criticality in recurrent neural networks

Natschläger, T., Bertschinger, N. & Legenstein, R. A., 2005, Advances in Neural Information Processing Systems. Cambridge: MIT Press, p. 145-152

Research output: Chapter in Book/Report/Conference proceedingConference contributionResearchpeer-review

Methods for estimating the computational power and generalization capability of neural microcircuits

Maass, W., Legenstein, R. A. & Bertschinger, N., 2005, Advances in Neural Information Processing Systems. MIT Press, p. 865-872

Research output: Chapter in Book/Report/Conference proceedingConference contributionResearchpeer-review