Research Output per year

## Fingerprint Dive into the research topics where Gundolf Haase is active. These topic labels come from the works of this person. Together they form a unique fingerprint.

- 2 Similar Profiles

eigenvalues
Physics & Astronomy

projection
Physics & Astronomy

ground state
Physics & Astronomy

partitions
Physics & Astronomy

approximation
Physics & Astronomy

Hilbert space
Physics & Astronomy

degrees of freedom
Physics & Astronomy

eigenvectors
Physics & Astronomy

##
Network
Recent external collaboration on country level. Dive into details by clicking on the dots.

## Research Output 2010 2017

### Implicit-Multi-Scale-Finite-Element coupling for distributed Multi-Scale Models

Pichler, F., Thaler, A. & Haase, G., 2017,*Lecture Notes in Computational Science and Engineering.*Springer International Publishing AG

Research output: Chapter in Book/Report/Conference proceeding › Conference contribution › Research › peer-review

### A numerical projection technique for large-scale eigenvalue problems

Gamillscheg, R., Haase, G. & von der Linden, W., 1 Oct 2011, In : Computer physics communications. 182, 10, p. 2168-2173 6 p.Research output: Contribution to journal › Article › Research › peer-review

eigenvalues

projection

degrees of freedom

matrices

energy

### A new approach to compute ground-state properties of strongly correlated many-body systems

Gamillscheg, R., von der Linden, W. & Haase, G., 2010.Research output: Working paper › Research

### A numerical projection technique for large-scale eigenvalue problems

Gamillscheg, R., Haase, G. & Linden, W. V. D., 6 Aug 2010, In : arXiv.org e-Print archive.Research output: Contribution to journal › Article › Research

File

eigenvalues

projection

degrees of freedom

matrices

energy

### Computation of ground-state properties of strongly correlated many-body systems by a two-subsystem ground-state approximation

Gamillscheg, R., Haase, G. & Linden, W. V. D., 26 Apr 2010, In : arXiv.org e-Print archive.Research output: Contribution to journal › Article › Research

File

ground state

partitions

approximation

Hilbert space

eigenvectors