Wreath product of matrices

Daniele D'Angeli, Alfredo Donno*

*Korrespondierende/r Autor/in für diese Arbeit

Publikation: Beitrag in einer FachzeitschriftArtikelBegutachtung

Abstract

We introduce a new matrix product, that we call the wreath product of matrices. The name is inspired by the analogous product for graphs, and the following important correspondence is proven: the wreath product of the adjacency matrices of two graphs provides the adjacency matrix of the wreath product of the graphs. This correspondence is exploited in order to study the spectral properties of the famous Lamplighter random walk: the spectrum is explicitly determined for the “Walk or switch” model on a complete graph of any size, with two lamp colors. The investigation of the spectrum of the matrix wreath product is actually developed for the more general case where the second factor is a circulant matrix. Finally, an application to the study of the uniqueness of the solution of generalized Sylvester matrix equations is treated.

Originalspracheenglisch
Seiten (von - bis)276-303
Seitenumfang28
FachzeitschriftLinear algebra and its applications
Jahrgang513
DOIs
PublikationsstatusVeröffentlicht - 15 Jan 2017

ASJC Scopus subject areas

  • Algebra und Zahlentheorie
  • Numerische Mathematik
  • Geometrie und Topologie
  • Diskrete Mathematik und Kombinatorik

Fingerprint

Untersuchen Sie die Forschungsthemen von „Wreath product of matrices“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren