Where am I? Using mobile sensor data to predict a user’s semantic place with a random forest algorithm

Publikation: Beitrag in Buch/Bericht/KonferenzbandBeitrag in einem KonferenzbandBegutachtung

Abstract

We use mobile sensor data to predict a mobile phone user’s semantic place, e.g. at home, at work, in a restaurant etc. Such information can be used to feed context-aware systems, that adapt for instance mobile phone settings like energy saving, connection to Internet, volume of ringtones etc. We consider the task of semantic place prediction as classification problem. In this paper we exploit five feature groups: (i) daily patterns, (ii) weekly patterns, (iii) WLAN information, (iv) battery charging state and (v) accelerometer data. We compare the performance of a Random Forest algorithm and two Support Vector Machines, one with an RBF kernel and one with a Pearson VII function based kernel, on a labelled dataset, and analyse the separate performances of the feature groups as well as promising combinations of feature groups. The winning combination of feature groups achieves an accuracy of 0.871 using a Random Forest algorithm on daily patterns and accelerometer data. A detailed analysis reveals that daily patterns are the most discriminative feature group for the given semantic place labels. Combining daily patterns with WLAN information, battery charging state or accelerometer data further improves the performance. The classifiers using these selected combinations perform better than the classifiers using all feature groups. This is especially encouraging for mobile computing, as fewer features mean that less computational power is required for classification.

Originalspracheenglisch
TitelMobile and Ubiquitous Systems
UntertitelComputing, Networking, and Services - 9th International Conference, MobiQuitous 2012, Revised Selected Papers
Redakteure/-innenHongbo Jiang, Kan Zheng, Mo Li
Herausgeber (Verlag)Springer Verlag Heidelberg
Seiten64-75
Seitenumfang12
ISBN (Print)9783642402371
PublikationsstatusVeröffentlicht - 1 Jan 2013
Veranstaltung9th International Conference on Mobile and Ubiquitous Systems: Computing, Networking and Services, MobiQuitous 2012 - Beijing, China
Dauer: 12 Dez 201214 Dez 2012

Publikationsreihe

NameLecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering
Band120
ISSN (Print)1867-8211

Konferenz

Konferenz9th International Conference on Mobile and Ubiquitous Systems: Computing, Networking and Services, MobiQuitous 2012
LandChina
OrtBeijing
Zeitraum12/12/1214/12/12

ASJC Scopus subject areas

  • Computernetzwerke und -kommunikation

Fields of Expertise

  • Information, Communication & Computing

Fingerprint

Untersuchen Sie die Forschungsthemen von „Where am I? Using mobile sensor data to predict a user’s semantic place with a random forest algorithm“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren