Vizrec: a two-stage recommender system for personalized visualizations

Belgin Mutlu, Eduardo Veas, Christoph Trattner, Vedran Sabol

Publikation: Beitrag in Buch/Bericht/KonferenzbandBeitrag in einem Konferenzband

Abstract

Identifying and using the information from distributed and heterogeneous information sources is a challenging task in many application fields. Even with services that offer well-defined structured content, such as digital libraries, it becomes increasingly difficult for a user to find the desired information. To cope with an overloaded information space, we propose a novel approach - VizRec - combining recommender systems (RS) and visualizations. VizRec suggests personalized visual representations for recommended data. One important aspect of our contribution and a prerequisite for VizRec are user preferences that build a personalization model. We present a crowd based evaluation and show how such a model of preferences can be elicited.
Originalspracheenglisch
TitelProceedings of the 20th International Conference on Intelligent User Interfaces Companion
Seiten49-52
Seitenumfang4
PublikationsstatusVeröffentlicht - 2015

Fingerprint Untersuchen Sie die Forschungsthemen von „Vizrec: a two-stage recommender system for personalized visualizations“. Zusammen bilden sie einen einzigartigen Fingerprint.

  • Dieses zitieren

    Mutlu, B., Veas, E., Trattner, C., & Sabol, V. (2015). Vizrec: a two-stage recommender system for personalized visualizations. in Proceedings of the 20th International Conference on Intelligent User Interfaces Companion (S. 49-52)