Visual-Interactive Semi-Supervised Labeling of Human Motion Capture Data

Jürgen Bernard, Eduard Dobermann, Anna Vögele, Björn Krüger, Jörn Kohlhammer, Dieter W. Fellner

Publikation: Beitrag in Buch/Bericht/KonferenzbandBeitrag in einem Konferenzband

Abstract

The characterization and abstraction of large multivariate time series data often poses challenges with respect to effectiveness or efficiency. Using the example of human motion capture data challenges exist in creating compact solutions that still reflect semantics and kinematics in a meaningful way. We present a visual-interactive approach for the semi-supervised labeling of human motion capture data. Users are enabled to assign labels to the data which can subsequently be used to represent the multivariate time series as sequences of motion classes. The approach combines multiple views supporting the user in the visual-interactive labeling process. Visual guidance concepts further ease the labeling process by propagating the results of supportive algorithmic models. The abstraction of motion capture data to sequences of event intervals allows overview and detail-on-demand visualizations even for large and heterogeneous data collections. The guided selection of candidate data for the extension and improvement of the labeling closes the feedback loop of the semi-supervised workflow. We demonstrate the effectiveness and the efficiency of the approach in two usage scenarios, taking visual-interactive learning and human motion synthesis as examples.
Originalspracheundefiniert/unbekannt
TitelVisualization and Data Analysis (VDA)
Herausgeber (Verlag)Society for Imaging Science and Technology
Seiten34-45
Seitenumfang12
DOIs
PublikationsstatusVeröffentlicht - 2017

Publikationsreihe

NameElectronic Imaging
Herausgeber (Verlag)IST, Springfield

Fields of Expertise

  • Information, Communication & Computing

Dieses zitieren

Bernard, J., Dobermann, E., Vögele, A., Krüger, B., Kohlhammer, J., & Fellner, D. W. (2017). Visual-Interactive Semi-Supervised Labeling of Human Motion Capture Data. in Visualization and Data Analysis (VDA) (S. 34-45). (Electronic Imaging). Society for Imaging Science and Technology. https://doi.org/10.2352/ISSN.2470-1173.2017.1.VDA-387