Unconventional Current Scaling and Edge Effects for Charge Transport through Molecular Clusters

Veronika Obersteiner, Georg Huhs, Nick Papior, Egbert Zojer*

*Korrespondierende/r Autor/in für diese Arbeit

Publikation: Beitrag in einer FachzeitschriftArtikel

Abstract

Metal-molecule-metal junctions are the key components of molecular electronics circuits. Gaining a microscopic understanding of their conducting properties is central to advancing the field. In the present contribution, we highlight the fundamental differences between single-molecule and ensemble junctions focusing on the fundamentals of transport through molecular clusters. In this way, we elucidate the collective behavior of parallel molecular wires, bridging the gap between single molecule and large-area monolayer electronics, where even in the latter case transport is usually dominated by finite-size islands. On the basis of first-principles charge-transport simulations, we explain why the scaling of the conductivity of a junction has to be distinctly nonlinear in the number of molecules it contains. Moreover, transport through molecular clusters is found to be highly inhomogeneous with pronounced edge effects determined by molecules in locally different electrostatic environments. These effects are most pronounced for comparably small clusters, but electrostatic considerations show that they prevail also for more extended systems.

Originalspracheenglisch
Seiten (von - bis)7350-7357
Seitenumfang8
FachzeitschriftNano Letters
Jahrgang17
Ausgabenummer12
DOIs
PublikationsstatusVeröffentlicht - 13 Dez 2017

ASJC Scopus subject areas

  • Bioengineering
  • !!Chemistry(all)
  • !!Materials Science(all)
  • !!Condensed Matter Physics
  • !!Mechanical Engineering

Fields of Expertise

  • Advanced Materials Science

Treatment code (Nähere Zuordnung)

  • Basic - Fundamental (Grundlagenforschung)

Kooperationen

  • NAWI Graz

Fingerprint Untersuchen Sie die Forschungsthemen von „Unconventional Current Scaling and Edge Effects for Charge Transport through Molecular Clusters“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren