Ultra-slow Li ion jump diffusion in Li2SnO3 studied by two-time 7Li spin-alignment echo NMR and 7Li NMR relaxometry

J. Langer, M. Wilkening*

*Korrespondierende/r Autor/-in für diese Arbeit

Publikation: Beitrag in einer FachzeitschriftArtikelBegutachtung

Abstract

A deeper understanding of atomic-scale Li+ hopping in solid Li ion conductors requires the study of ion dynamics over a broad time scale and length scale. Here, we report a complementary study, applying 7Li spin-lattice relaxation (SLR) nuclear magnetic resonance (NMR) techniques together with spin-alignment echo (SAE) NMR to study slow Li+ self-diffusion in monoclinic Li2SnO3. The stannate serves as a model substance to quantify both local barriers of the elementary steps of ion diffusion as well as long-range ion transport. From spin-alignment echoes, if recorded at short preparation time of 20 μs, activation energies (0.46 eV) and Li jump rates were deduced. The same diffusion process is seen via SLR NMR (0.45 eV) performed in the rotating frame of reference at a locking frequency of 20 kHz. By comparing jump rates extracted from SAE NMR with those recently measured by high-resolution 1D 6Li exchange NMR we attribute the SLR and SAE NMR response to the Li(1,2)-Li(3) exchange process (5 s- 1) taking place perpendicular to the ab-plane in Li2SnO3. SAE NMR measurements, dedicated to elaborate the influence of dipolar correlations on echo formation at tp > 20 μs, reveal a strong dependence of the SAE rate constant on preparation time at low temperatures. This finding might points towards heterogeneous dynamics including localized jump processes which are likely to be caused by a slightly disordered structure of the oxide.

Originalspracheenglisch
Seiten (von - bis)85-93
Seitenumfang9
FachzeitschriftSolid State Ionics
Jahrgang293
DOIs
PublikationsstatusVeröffentlicht - 1 Okt. 2016

ASJC Scopus subject areas

  • Allgemeine Chemie
  • Allgemeine Materialwissenschaften
  • Physik der kondensierten Materie

Fingerprint

Untersuchen Sie die Forschungsthemen von „Ultra-slow Li ion jump diffusion in Li2SnO3 studied by two-time 7Li spin-alignment echo NMR and 7Li NMR relaxometry“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren