Triangulations intersect nicely

Oswin Aichholzer, Franz Aurenhammer, Siu-Wing Cheng, N. Katoh, G. Rote, M. Taschwer, Yin-Feng Xu

Publikation: Beitrag in einer FachzeitschriftArtikelForschungBegutachtung

Abstract

We show that there is a matching between the edges of any two triangulations of a planar point set such that an edge of one triangulation is matched either to the identical edge in the other triangulation or to an edge that crosses it. This theorem also holds for the triangles of the triangulations and in general independence systems. As an application, we give some lower bounds for the minimum-weight triangulation which can be computed in polynomial time by matching and network-flow techniques. We exhibit an easy-to-recognize class of point sets for which the minimum-weight triangulation coincides with the greedy triangulation.
Originalspracheenglisch
Seiten (von - bis)339-359
FachzeitschriftDiscrete & computational geometry
Jahrgang16
Ausgabenummer4
PublikationsstatusVeröffentlicht - 1996

    Fingerprint

Treatment code (Nähere Zuordnung)

  • Theoretical

Dieses zitieren

Aichholzer, O., Aurenhammer, F., Cheng, S-W., Katoh, N., Rote, G., Taschwer, M., & Xu, Y-F. (1996). Triangulations intersect nicely. Discrete & computational geometry, 16(4), 339-359.