Transition operations over plane trees

Torrie L. Nichols, Alexander Pilz*, Csaba D. Tóth, Ahad N. Zehmakan

*Korrespondierende/r Autor/in für diese Arbeit

Publikation: Beitrag in Buch/Bericht/KonferenzbandBeitrag in einem Konferenzband


The operation of transforming one spanning tree into another by replacing an edge has been considered widely, both for general and geometric graphs. For the latter, several variants have been studied (e.g., edge slides and edge rotations). In a transition graph on the set T(S) of noncrossing straight-line spanning trees on a finite point set S in the plane, two spanning trees are connected by an edge if one can be transformed into the other by such an operation. We study bounds on the diameter of these graphs, and consider the various operations both on general point sets and sets in convex position. In addition, we address the problem variant where operations may be performed simultaneously. We prove new lower and upper bounds for the diameters of the corresponding transition graphs and pose open problems.

TitelLATIN 2018
UntertitelTheoretical Informatics - 13th Latin American Symposium, Proceedings
Herausgeber (Verlag)Springer Verlag Heidelberg
ISBN (Print)9783319774039
PublikationsstatusVeröffentlicht - 1 Jan 2018
Extern publiziertJa
Veranstaltung13th International Symposium on Latin American Theoretical Informatics, LATIN 2018 - Buenos Aires, Argentinien
Dauer: 16 Apr 201819 Apr 2018


NameLecture Notes in Computer Science
ISSN (Print)0302-9743
ISSN (elektronisch)1611-3349


Konferenz13th International Symposium on Latin American Theoretical Informatics, LATIN 2018
OrtBuenos Aires

ASJC Scopus subject areas

  • !!Theoretical Computer Science
  • !!Computer Science(all)

Fingerprint Untersuchen Sie die Forschungsthemen von „Transition operations over plane trees“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren