Transformation dynamics of Ni clusters into NiO rings under electron beam irradiation

Daniel Knez*, Philipp Thaler, Alexander Volk, Gerald Kothleitner, Wolfgang E. Ernst, Ferdinand Hofer

*Korrespondierende/r Autor/in für diese Arbeit

Publikation: Beitrag in einer FachzeitschriftArtikel

Abstract

We report the transformation of nickel clusters into NiO rings by an electron beam induced nanoscale Kirkendall effect. High-purity nickel clusters consisting of a few thousand atoms have been used as precursors and were synthesized with the superfluid helium droplet technique. Aberration-corrected, analytical scanning transmission electron microscopy was applied to oxidise and simultaneously analyse the nanostructures. The transient dynamics of the oxidation could be documented by time lapse series using high-angle annular dark-field imaging and electron energy-loss spectroscopy. A two-step Cabrera-Mott oxidation mechanism was identified. It was found that water adsorbed adjacent to the clusters acts as oxygen source for the electron beam induced oxidation. The size-dependent oxidation rate was estimated by quantitative EELS measurements combined with molecular dynamics simulations. Our findings could serve to better control sample changes during examination in an electron microscope, and might provide a methodology to generate other metal oxide nanostructures.

Originalspracheenglisch
Seiten (von - bis)105-111
Seitenumfang7
FachzeitschriftUltramicroscopy
Jahrgang176
DOIs
PublikationsstatusVeröffentlicht - 1 Mai 2017

ASJC Scopus subject areas

  • !!Electronic, Optical and Magnetic Materials
  • !!Atomic and Molecular Physics, and Optics
  • !!Instrumentation

Fields of Expertise

  • Advanced Materials Science

Fingerprint Untersuchen Sie die Forschungsthemen von „Transformation dynamics of Ni clusters into NiO rings under electron beam irradiation“. Zusammen bilden sie einen einzigartigen Fingerprint.

  • Dieses zitieren