Towards High-Fidelity Gold Nano-Antennas using 3D-Nanoprinting

David Kuhness, Jürgen Sattelkow, Robert Winkler, Harald Plank

Publikation: KonferenzbeitragPosterBegutachtung


In the last decade, the area of nano-plasmonics has attracted increasing interest for real applications such as directed nano-emitters or high-performance sensors. While traditional fabrication, such as electron beam lithography, provides very high lateral resolution, they are often limited to flat surfaces. To overcome this limitation, additive direct-write methods are ideal candidates, although techniques for reliable sub-100 nm fabrication are only few.1 Focused electron beam induced deposition (FEBID) is one of the promising candidates, which not only meet the resolution requirements but also allows true 3D nano-printing on almost any material and surface morphology.2 In a previous study, we used FEBID for fabrication of plasmonically active, freestanding 3D architectures with sub-30 nm branch diameters composed of pure gold.3 Although generally successful, we found two aspects, which require further research to exploit the full potential of this approach. First, individual branches revealed a certain side wall roughness and slightly conical shapes. Second, the required purification step after initial fabrication affect the antenna morphology even further, which leads to a re-duced plasmon resonance performance compared to traditionally fabricated nano-structures. Based on this situation, we here present our latest activities towards high-est shape fidelity of 3D nano-pillars including the material transfer into pure Au nano-antennas for high-performance 3D nano-plasmonics.
PublikationsstatusVeröffentlicht - 17 Sep. 2019
VeranstaltungE-MRS Fall Meeting 2019: European Materials Research Society - Central Campus - Warsaw University of Technology Pl. Politechniki 1, Warsaw, Polen
Dauer: 16 Sep. 201919 Sep. 2019


KonferenzE-MRS Fall Meeting 2019
KurztitelE-MRS Fall Meeting


  • 3D-Nanoprinting
  • Plasmonics
  • Nano-Antennas

Dieses zitieren