The values of the Riemann zeta-function on discrete sets

Junghun Lee, Athanasios Sourmelidis, Jörn Steuding, Ade Irma Suriajaya

Publikation: Beitrag in Buch/Bericht/KonferenzbandBeitrag in Buch/Bericht

Abstract

We study the values taken by the Riemann zeta-function ζ on discrete sets. We show that infinite vertical arithmetic progressions are uniquely determined by the values of ζ taken on this set. Moreover, we prove a joint discrete universality theorem for ζ with respect to certain permutations of the set of positive integers. Finally, we study a generalization of the classical denseness theorems for ζ.
Originalspracheenglisch
TitelVarious Aspects of Multiple Zeta Functions — in honor of Professor Kohji Matsumoto's 60th birthday
Seiten315-334
Seitenumfang17
DOIs
PublikationsstatusVeröffentlicht - 2020
Extern publiziertJa

Publikationsreihe

NameAdvanced Studies in Pure Mathematics

Fingerprint

Untersuchen Sie die Forschungsthemen von „The values of the Riemann zeta-function on discrete sets“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren