Abstract
This paper presents a combinatorial study of sums of integer powers of the cotangent. Our main tool is the realization of the cotangent values as eigenvalues of a simple self-adjoint matrix with complex integer entries. We use the trace method to draw conclusions about integer values of the sums and series expansions of the generating function to provide explicit evaluations; it is remarkable that throughout the calculations the combinatorics are governed by the higher tangent and arctangent numbers exclusively. Finally, we indicate a new approximation of the values of the Riemann zeta function at even integer arguments.
Originalsprache | englisch |
---|---|
Aufsatznummer | 105324 |
Fachzeitschrift | Journal of Combinatorial Theory. Series A |
Jahrgang | 177 |
DOIs | |
Publikationsstatus | Veröffentlicht - Jan 2021 |
ASJC Scopus subject areas
- !!Theoretical Computer Science
- !!Discrete Mathematics and Combinatorics
- !!Computational Theory and Mathematics