The Production of Matchout-Deuterated Cholesterol and the Study of Bilayer-Cholesterol Interactions

Sarah Waldie, Martine Moulin, Lionel Porcar, Harald Pichler, Gernot A. Strohmeier, Maximilian Skoda, V. Trevor Forsyth, Michael Haertlein*, Selma Maric, Marité Cárdenas

*Korrespondierende/r Autor/in für diese Arbeit

Publikation: Beitrag in einer FachzeitschriftArtikel

Abstract

The deuteration of biomolecules provides advanced opportunities for neutron scattering studies. For low resolution studies using techniques such as small-angle neutron scattering and neutron reflection, the level of deuteration of a sample can be varied to match the scattering length density of a specific D 2 O/H 2 O solvent mixture. This can be of major value in structural studies where specific regions of a complex system can be highlighted, and others rendered invisible. This is especially useful in analyses of the structure and dynamics of membrane components. In mammalian membranes, the presence of cholesterol is crucial in modulating the properties of lipids and in their interaction with proteins. Here, a protocol is described for the production of partially deuterated cholesterol which has a neutron scattering length density that matches that of 100% D 2 O solvent (hereby named matchout cholesterol). The level of deuteration was determined by mass spectrometry and nuclear magnetic resonance. The cholesterol match-point was verified experimentally using small angle neutron scattering. The matchout cholesterol was used to investigate the incorporation of cholesterol in various phosphatidylcholine supported lipid bilayers by neutron reflectometry. The study included both saturated and unsaturated lipids, as well as lipids with varying chain lengths. It was found that cholesterol is distributed asymmetrically within the bilayer, positioned closer to the headgroups of the lipids than to the middle of the tail core, regardless of the phosphatidylcholine species.

Originalspracheenglisch
Aufsatznummer5118
FachzeitschriftScientific Reports
Jahrgang9
Ausgabenummer1
DOIs
PublikationsstatusVeröffentlicht - 1 Dez 2019

ASJC Scopus subject areas

  • Allgemein
  • !!Biochemistry, Genetics and Molecular Biology(all)

Fields of Expertise

  • Human- & Biotechnology

Treatment code (Nähere Zuordnung)

  • Application
  • Basic - Fundamental (Grundlagenforschung)
  • Experimental

Fingerprint Untersuchen Sie die Forschungsthemen von „The Production of Matchout-Deuterated Cholesterol and the Study of Bilayer-Cholesterol Interactions“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren