The grasp detected: Time domain classification of grasp and hold tasks

Publikation: KonferenzbeitragPosterForschungBegutachtung

Abstract

Brain-Computer Interfaces (BCIs) enable its users to interact with their environment only by thought. Earlier studies indicated [1, 2] that
BCI might be a suitable method for controlling a neuroprostheses, which could assist people with spinal cord injuries (SCI) in their daily life. One
drawback for the end user is that only simple motor imaginations (MI) are available for control e.g. MI of both feet to control ones arm is abstract
and in contradiction to an associated natural movement. Therefore we are looking for means to design a more natural control modality. One
promising scenario would be to use MI of different grasps to actually control different grasps of the neuroprosthesis. In this study we
attempt to classify the execution of different grasp types in low-frequency time-domain EEG signals.
Originalspracheenglisch
PublikationsstatusVeröffentlicht - 1 Jun 2016
Veranstaltung6th International BCI Meeting - Pacific Grove, CA, Asilomar, USA / Vereinigte Staaten
Dauer: 30 Mai 20163 Jun 2016

Konferenz

Konferenz6th International BCI Meeting
LandUSA / Vereinigte Staaten
OrtAsilomar
Zeitraum30/05/163/06/16

    Fingerprint

Dieses zitieren

Schwarz, A., Ofner, P., Pereira, J., & Müller-Putz, G. (2016). The grasp detected: Time domain classification of grasp and hold tasks. Postersitzung präsentiert bei 6th International BCI Meeting , Asilomar, USA / Vereinigte Staaten.