Stable isogeometric analysis of trimmed geometries

Benjamin Marussig*, Jürgen Zechner, Gernot Beer, Thomas Peter Fries

*Korrespondierende/r Autor/in für diese Arbeit

Publikation: Beitrag in einer FachzeitschriftArtikel

Abstract

We explore extended B-splines as a stable basis for isogeometric analysis with trimmed parameter spaces. The stabilization is accomplished by an appropriate substitution of B-splines that may lead to ill-conditioned system matrices. The construction for non-uniform knot vectors is presented. The properties of extended B-splines are examined in the context of interpolation, potential, and linear elasticity problems and excellent results are attained. The analysis is performed by an isogeometric boundary element formulation using collocation. It is argued that extended B-splines provide a flexible and simple stabilization scheme which ideally suits the isogeometric paradigm.

Originalspracheenglisch
Seiten (von - bis)497-521
FachzeitschriftComputer Methods in Applied Mechanics and Engineering
Jahrgang316
DOIs
PublikationsstatusVeröffentlicht - 2017

ASJC Scopus subject areas

  • !!Computational Mechanics
  • !!Mechanics of Materials
  • !!Mechanical Engineering
  • !!Physics and Astronomy(all)
  • !!Computer Science Applications

Fingerprint Untersuchen Sie die Forschungsthemen von „Stable isogeometric analysis of trimmed geometries“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren