Projekte pro Jahr
Abstract
We propose a 2D computed tomography (CT) slice image reconstruction method from a limited number of projection images using Wasserstein generative adversarial networks (wGAN). Our wGAN optimizes the 2D CT image reconstruction by utilizing an adversarial loss to improve the perceived image quality as well as an L1 content loss to enforce structural similarity to the target image. We evaluate our wGANs using different weight factors between the two loss functions and compare to a convolutional neural network (CNN) optimized on L1 and the Filtered Backprojection (FBP) method. The evaluation shows that the results generated by the machine learning based approaches are substantially better than those from the FBP method. In contrast to the blurrier looking images generated by the CNNs trained on L1, the wGANs results appear sharper and seem to contain more structural information. We show that a certain amount of projection data is needed to get a correct representation of the anatomical correspondences.
Originalsprache | englisch |
---|---|
Titel | Machine Learning for Medical Image Reconstruction - First International Workshop, MLMIR 2018, Held in Conjunction with MICCAI 2018, Proceedings |
Herausgeber (Verlag) | Springer Verlag Heidelberg |
Seiten | 75-82 |
Seitenumfang | 8 |
Band | 11074 LNCS |
ISBN (Print) | 9783030001285 |
DOIs | |
Publikationsstatus | Veröffentlicht - 16 Sep. 2018 |
Veranstaltung | 1st Workshop on Machine Learning for Medical Image Reconstruction, MLMIR 2018 Held in Conjunction with 21st Medical Image Computing and Computer Assisted Intervention, MICCAI 2018 - Granada, Spanien Dauer: 16 Sep. 2018 → 16 Sep. 2018 |
Publikationsreihe
Name | Lecture Notes in Computer Science |
---|---|
Band | 11074 |
ISSN (Print) | 0302-9743 |
ISSN (elektronisch) | 1611-3349 |
Konferenz
Konferenz | 1st Workshop on Machine Learning for Medical Image Reconstruction, MLMIR 2018 Held in Conjunction with 21st Medical Image Computing and Computer Assisted Intervention, MICCAI 2018 |
---|---|
Land/Gebiet | Spanien |
Ort | Granada |
Zeitraum | 16/09/18 → 16/09/18 |
ASJC Scopus subject areas
- Theoretische Informatik
- Informatik (insg.)
Fields of Expertise
- Information, Communication & Computing
Kooperationen
- BioTechMed-Graz
Fingerprint
Untersuchen Sie die Forschungsthemen von „Sparse-view CT Reconstruction using Wasserstein GANs“. Zusammen bilden sie einen einzigartigen Fingerprint.Projekte
- 1 Abgeschlossen
-
FWF - FAME - Vollautomatische MRT-basierte Altersschätzung von Jugendlichen
Bischof, H. & Urschler, M.
1/07/15 → 31/12/18
Projekt: Foschungsprojekt