Smart Hypothesis Generation for Efficient and Robust Room Layout Estimation

Publikation: Beitrag in einer FachzeitschriftArtikel


We propose a novel method to efficiently estimate the spatial layout of a room from a single monocular RGB image. As existing approaches based on low-level feature extraction, followed by a vanishing point estimation are very slow and often unreliable in realistic scenarios, we build on semantic segmentation of the input image. To obtain better segmentations, we introduce a robust, accurate and very efficient hypothesize-and-test scheme. The key idea is to use three segmentation hypotheses, each based on a different number of visible walls. For each hypothesis, we predict the image locations of the room corners and select the hypothesis for which the layout estimated from the room corners is consistent with the segmentation. We demonstrate the efficiency and robustness of our method on three challenging benchmark datasets, where we significantly outperform the state-of-the-art.
Originalspracheenglisch e-Print archive
PublikationsstatusVeröffentlicht - 2019

Fingerprint Untersuchen Sie die Forschungsthemen von „Smart Hypothesis Generation for Efficient and Robust Room Layout Estimation“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren