Single-cycle nonlinear optics

E. Goulielmakis, M. Schultze, V. S. Yakovlev, J. Gagnon, M. Uiberacker, A. L. Aquila, E. M. Gullikson, D. T. Attwood, R. Kienberger, F. Krausz, U. Kleineberg

Publikation: Beitrag in einer FachzeitschriftArtikelForschungBegutachtung

Abstract

Nonlinear optics plays a central role in the advancement of optical science and laser-based technologies. We report on the confinement of the nonlinear interaction of light with matter to a single wave cycle and demonstrate its utility for time-resolved and strong-field science. The electric field of 3.3-femtosecond, 0.72-micron laser pulses with a controlled and measured waveform ionizes atoms near the crests of the central wave cycle, with ionization being virtually switched off outside this interval. Isolated sub-100-attosecond pulses of extreme ultraviolet light (photon energy ∼ 80 electron volts), containing ∼0.5 nanojoule of energy, emerge from the interaction with a conversion efficiency of ∼10–6. These tools enable the study of the precision control of electron motion with light fields and electron-electron interactions with a resolution approaching the atomic unit of time (∼24 attoseconds).
Originalspracheenglisch
Seiten (von - bis)1614-1617
FachzeitschriftScience
Jahrgang320
Ausgabenummer5883
DOIs
PublikationsstatusVeröffentlicht - 20 Jun 2008
Extern publiziertJa

Fields of Expertise

  • Advanced Materials Science

Dies zitieren

Goulielmakis, E., Schultze, M., Yakovlev, V. S., Gagnon, J., Uiberacker, M., Aquila, A. L., ... Kleineberg, U. (2008). Single-cycle nonlinear optics. Science, 320(5883), 1614-1617. https://doi.org/10.1126/science.1157846

Single-cycle nonlinear optics. / Goulielmakis, E.; Schultze, M.; Yakovlev, V. S.; Gagnon, J.; Uiberacker, M.; Aquila, A. L.; Gullikson, E. M.; Attwood, D. T.; Kienberger, R.; Krausz, F.; Kleineberg, U.

in: Science, Jahrgang 320, Nr. 5883, 20.06.2008, S. 1614-1617.

Publikation: Beitrag in einer FachzeitschriftArtikelForschungBegutachtung

Goulielmakis, E, Schultze, M, Yakovlev, VS, Gagnon, J, Uiberacker, M, Aquila, AL, Gullikson, EM, Attwood, DT, Kienberger, R, Krausz, F & Kleineberg, U 2008, 'Single-cycle nonlinear optics' Science, Jg. 320, Nr. 5883, S. 1614-1617. https://doi.org/10.1126/science.1157846
Goulielmakis E, Schultze M, Yakovlev VS, Gagnon J, Uiberacker M, Aquila AL et al. Single-cycle nonlinear optics. Science. 2008 Jun 20;320(5883):1614-1617. https://doi.org/10.1126/science.1157846
Goulielmakis, E. ; Schultze, M. ; Yakovlev, V. S. ; Gagnon, J. ; Uiberacker, M. ; Aquila, A. L. ; Gullikson, E. M. ; Attwood, D. T. ; Kienberger, R. ; Krausz, F. ; Kleineberg, U. / Single-cycle nonlinear optics. in: Science. 2008 ; Jahrgang 320, Nr. 5883. S. 1614-1617.
@article{45ead2ff92b949109af409377b5d1fe4,
title = "Single-cycle nonlinear optics",
abstract = "Nonlinear optics plays a central role in the advancement of optical science and laser-based technologies. We report on the confinement of the nonlinear interaction of light with matter to a single wave cycle and demonstrate its utility for time-resolved and strong-field science. The electric field of 3.3-femtosecond, 0.72-micron laser pulses with a controlled and measured waveform ionizes atoms near the crests of the central wave cycle, with ionization being virtually switched off outside this interval. Isolated sub-100-attosecond pulses of extreme ultraviolet light (photon energy ∼ 80 electron volts), containing ∼0.5 nanojoule of energy, emerge from the interaction with a conversion efficiency of ∼10–6. These tools enable the study of the precision control of electron motion with light fields and electron-electron interactions with a resolution approaching the atomic unit of time (∼24 attoseconds).",
author = "E. Goulielmakis and M. Schultze and Yakovlev, {V. S.} and J. Gagnon and M. Uiberacker and Aquila, {A. L.} and Gullikson, {E. M.} and Attwood, {D. T.} and R. Kienberger and F. Krausz and U. Kleineberg",
year = "2008",
month = "6",
day = "20",
doi = "10.1126/science.1157846",
language = "English",
volume = "320",
pages = "1614--1617",
journal = "Science",
issn = "0036-8075",
publisher = "American Association for the Advancement of Science",
number = "5883",

}

TY - JOUR

T1 - Single-cycle nonlinear optics

AU - Goulielmakis, E.

AU - Schultze, M.

AU - Yakovlev, V. S.

AU - Gagnon, J.

AU - Uiberacker, M.

AU - Aquila, A. L.

AU - Gullikson, E. M.

AU - Attwood, D. T.

AU - Kienberger, R.

AU - Krausz, F.

AU - Kleineberg, U.

PY - 2008/6/20

Y1 - 2008/6/20

N2 - Nonlinear optics plays a central role in the advancement of optical science and laser-based technologies. We report on the confinement of the nonlinear interaction of light with matter to a single wave cycle and demonstrate its utility for time-resolved and strong-field science. The electric field of 3.3-femtosecond, 0.72-micron laser pulses with a controlled and measured waveform ionizes atoms near the crests of the central wave cycle, with ionization being virtually switched off outside this interval. Isolated sub-100-attosecond pulses of extreme ultraviolet light (photon energy ∼ 80 electron volts), containing ∼0.5 nanojoule of energy, emerge from the interaction with a conversion efficiency of ∼10–6. These tools enable the study of the precision control of electron motion with light fields and electron-electron interactions with a resolution approaching the atomic unit of time (∼24 attoseconds).

AB - Nonlinear optics plays a central role in the advancement of optical science and laser-based technologies. We report on the confinement of the nonlinear interaction of light with matter to a single wave cycle and demonstrate its utility for time-resolved and strong-field science. The electric field of 3.3-femtosecond, 0.72-micron laser pulses with a controlled and measured waveform ionizes atoms near the crests of the central wave cycle, with ionization being virtually switched off outside this interval. Isolated sub-100-attosecond pulses of extreme ultraviolet light (photon energy ∼ 80 electron volts), containing ∼0.5 nanojoule of energy, emerge from the interaction with a conversion efficiency of ∼10–6. These tools enable the study of the precision control of electron motion with light fields and electron-electron interactions with a resolution approaching the atomic unit of time (∼24 attoseconds).

U2 - 10.1126/science.1157846

DO - 10.1126/science.1157846

M3 - Article

VL - 320

SP - 1614

EP - 1617

JO - Science

JF - Science

SN - 0036-8075

IS - 5883

ER -