Short-range Li diffusion vs long-range ionic conduction in nanocrystalline lithium peroxide Li2O2 – the discharge product in lithium-air batteries

Andreas Dunst*, Viktor Epp, Ilie Hanzu, Stefan Freunberger, Martin Wilkening

*Korrespondierende/r Autor/-in für diese Arbeit

Publikation: Beitrag in einer FachzeitschriftArtikelBegutachtung

Abstract

Understanding charge carrier transport in Li2O2, the storage material in the non-aqueous Li-O2 battery, is key to the development of this high-energy battery. Here, we studied ionic transport properties and Li self-diffusion in nanocrystalline Li2O2 by conductivity and temperature variable 7Li NMR spectroscopy. Nanostructured Li2O2, characterized by a mean crystallite size of less than 50 nm as estimated from X-ray diffraction peak broadening, was prepared by high-energy ball milling of microcrystalline lithium peroxide with μm sized crystallites. At room temperature the overall conductivity σ of the microcrystalline reference sample turned out to be very low (3.4 × 10−13 S cm−1) which is in agreement with results from temperature-variable 7Li NMR line shape measurements. Ball-milling, however, leads to an increase of σ by approximately two orders of magnitude (1.1 × 10−10 S cm−1); correspondingly, the activation energy decreases from 0.89 eV to 0.82 eV. The electronic contribution σeon, however, is in the order of 9 × 10−12 S cm−1 which makes less than 10% of the total value. Interestingly, 7Li NMR lines of nano-Li2O2 undergo pronounced heterogeneous motional narrowing which manifests in a two-component line shape emerging with increasing temperatures. Most likely, the enhancement in σ can be traced back to the generation of a spin reservoir with highly mobile Li ions; these are expected to reside in the nearest neighbourhood of defects generated or near the structurally disordered and defect-rich interfacial regions formed during mechanical treatment.
Originalspracheenglisch
Seiten (von - bis)2739-2752
FachzeitschriftEnergy & Environmental Science
Jahrgang7
DOIs
PublikationsstatusVeröffentlicht - 2014

Fields of Expertise

  • Advanced Materials Science

Treatment code (Nähere Zuordnung)

  • Basic - Fundamental (Grundlagenforschung)

Fingerprint

Untersuchen Sie die Forschungsthemen von „Short-range Li diffusion vs long-range ionic conduction in nanocrystalline lithium peroxide Li2O2 – the discharge product in lithium-air batteries“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren