Shape Processing for Content Generation

Publikation: StudienabschlussarbeitDissertationForschung

Abstract

The thesis "Shape Processing for Content Generation" by Christoph Schinko presents work on generative modeling, novel applications for inverse generative modeling, and visualization systems. These areas are regarded as steps in the context of shape processing, hence the thesis is structured that way.

After defining the term shape, the first part of the thesis is concerned with shape descriptions. While some shape descriptions are of abstract nature, others can be directly used, for example, in the field of computer aided geometric design. The process of working with shape descriptions is called shape modeling. This topic includes primitive modeling using 3D modeling software or scene description languages, semantic modeling dealing with meta data, and generative modeling using domain specific information.

An application for generative modeling in the context of wedding rings is implemented using a domain specific language for generative modeling - the Generative Modeling Language (GML). The multitude of involved platforms (the GML is implemented in C++, the postfix notation of the language itself is similar to Adobe Postscript, the application is targeted for the web) has inspired the idea to create an innovative meta-modeler approach called "Euclides". Its innovative concept of using a beginner-friendly syntax in combination with translation back-ends for various different platforms presents a foundation for the platform-independent creation of generative building blocks. This approach significantly reduces the effort for implementing and maintaining generative description for different platforms.

Building up on previous work on finding the best generative description of one or several given instances of an object class, an application to analyze digitized objects in terms of changes and damages is presented. The system automatically combines generative descriptions with reconstructed objects and performs a nominal/actual value comparison. By applying the variances of the reconstructed objects to a different parameter set of the generative description, new shapes can be created. With this novel approach, the design of shapes using both low-level details and high-level shape parameters is possible.

The last step in the context of shape processing is concerned with visualization systems for humans to perceive and interact with shapes. In this context, a novel method to project a coherent, seamless and perspectively corrected image from one particular viewpoint using an arbitrary number of projectors is presented. The approach distinguishes itself by being quick and efficient. The last contribution to this topic is describing an optimized stereoscopic display based on parallax barriers for a driving simulator.
Originalspracheenglisch
Gradverleihende Hochschule
  • Technische Universität Graz (90000)
Betreuer/-in / Berater/-in
  • Fellner, Wolf-Dietrich, Betreuer
  • Klein, Reinhard, Betreuer, Externe Person
PublikationsstatusVeröffentlicht - 12 Mär 2018

Fingerprint

Processing
Visualization
Metadata
Computer aided design
Simulators
Semantics
Display devices
Modeling languages

Schlagwörter

    ASJC Scopus subject areas

    • !!Computer Graphics and Computer-Aided Design
    • !!Computer Science Applications

    Fields of Expertise

    • Information, Communication & Computing

    Treatment code (Nähere Zuordnung)

    • Basic - Fundamental (Grundlagenforschung)
    • Application

    Dies zitieren

    Shape Processing for Content Generation. / Schinko, Christoph.

    2018. 213 S.

    Publikation: StudienabschlussarbeitDissertationForschung

    Schinko, C 2018, 'Shape Processing for Content Generation', Technische Universität Graz (90000).
    @phdthesis{ed3ca832d1e544f3a0c55da23448eaf4,
    title = "Shape Processing for Content Generation",
    abstract = "The thesis {"}Shape Processing for Content Generation{"} by Christoph Schinko presents work on generative modeling, novel applications for inverse generative modeling, and visualization systems. These areas are regarded as steps in the context of shape processing, hence the thesis is structured that way.After defining the term shape, the first part of the thesis is concerned with shape descriptions. While some shape descriptions are of abstract nature, others can be directly used, for example, in the field of computer aided geometric design. The process of working with shape descriptions is called shape modeling. This topic includes primitive modeling using 3D modeling software or scene description languages, semantic modeling dealing with meta data, and generative modeling using domain specific information.An application for generative modeling in the context of wedding rings is implemented using a domain specific language for generative modeling - the Generative Modeling Language (GML). The multitude of involved platforms (the GML is implemented in C++, the postfix notation of the language itself is similar to Adobe Postscript, the application is targeted for the web) has inspired the idea to create an innovative meta-modeler approach called {"}Euclides{"}. Its innovative concept of using a beginner-friendly syntax in combination with translation back-ends for various different platforms presents a foundation for the platform-independent creation of generative building blocks. This approach significantly reduces the effort for implementing and maintaining generative description for different platforms.Building up on previous work on finding the best generative description of one or several given instances of an object class, an application to analyze digitized objects in terms of changes and damages is presented. The system automatically combines generative descriptions with reconstructed objects and performs a nominal/actual value comparison. By applying the variances of the reconstructed objects to a different parameter set of the generative description, new shapes can be created. With this novel approach, the design of shapes using both low-level details and high-level shape parameters is possible.The last step in the context of shape processing is concerned with visualization systems for humans to perceive and interact with shapes. In this context, a novel method to project a coherent, seamless and perspectively corrected image from one particular viewpoint using an arbitrary number of projectors is presented. The approach distinguishes itself by being quick and efficient. The last contribution to this topic is describing an optimized stereoscopic display based on parallax barriers for a driving simulator.",
    keywords = "Shape, Shape Modeling, Euclides, Modeling, Generative Modeling, Inverse Modeling, Visualization",
    author = "Christoph Schinko",
    year = "2018",
    month = "3",
    day = "12",
    language = "English",
    school = "Graz University of Technology (90000)",

    }

    TY - THES

    T1 - Shape Processing for Content Generation

    AU - Schinko, Christoph

    PY - 2018/3/12

    Y1 - 2018/3/12

    N2 - The thesis "Shape Processing for Content Generation" by Christoph Schinko presents work on generative modeling, novel applications for inverse generative modeling, and visualization systems. These areas are regarded as steps in the context of shape processing, hence the thesis is structured that way.After defining the term shape, the first part of the thesis is concerned with shape descriptions. While some shape descriptions are of abstract nature, others can be directly used, for example, in the field of computer aided geometric design. The process of working with shape descriptions is called shape modeling. This topic includes primitive modeling using 3D modeling software or scene description languages, semantic modeling dealing with meta data, and generative modeling using domain specific information.An application for generative modeling in the context of wedding rings is implemented using a domain specific language for generative modeling - the Generative Modeling Language (GML). The multitude of involved platforms (the GML is implemented in C++, the postfix notation of the language itself is similar to Adobe Postscript, the application is targeted for the web) has inspired the idea to create an innovative meta-modeler approach called "Euclides". Its innovative concept of using a beginner-friendly syntax in combination with translation back-ends for various different platforms presents a foundation for the platform-independent creation of generative building blocks. This approach significantly reduces the effort for implementing and maintaining generative description for different platforms.Building up on previous work on finding the best generative description of one or several given instances of an object class, an application to analyze digitized objects in terms of changes and damages is presented. The system automatically combines generative descriptions with reconstructed objects and performs a nominal/actual value comparison. By applying the variances of the reconstructed objects to a different parameter set of the generative description, new shapes can be created. With this novel approach, the design of shapes using both low-level details and high-level shape parameters is possible.The last step in the context of shape processing is concerned with visualization systems for humans to perceive and interact with shapes. In this context, a novel method to project a coherent, seamless and perspectively corrected image from one particular viewpoint using an arbitrary number of projectors is presented. The approach distinguishes itself by being quick and efficient. The last contribution to this topic is describing an optimized stereoscopic display based on parallax barriers for a driving simulator.

    AB - The thesis "Shape Processing for Content Generation" by Christoph Schinko presents work on generative modeling, novel applications for inverse generative modeling, and visualization systems. These areas are regarded as steps in the context of shape processing, hence the thesis is structured that way.After defining the term shape, the first part of the thesis is concerned with shape descriptions. While some shape descriptions are of abstract nature, others can be directly used, for example, in the field of computer aided geometric design. The process of working with shape descriptions is called shape modeling. This topic includes primitive modeling using 3D modeling software or scene description languages, semantic modeling dealing with meta data, and generative modeling using domain specific information.An application for generative modeling in the context of wedding rings is implemented using a domain specific language for generative modeling - the Generative Modeling Language (GML). The multitude of involved platforms (the GML is implemented in C++, the postfix notation of the language itself is similar to Adobe Postscript, the application is targeted for the web) has inspired the idea to create an innovative meta-modeler approach called "Euclides". Its innovative concept of using a beginner-friendly syntax in combination with translation back-ends for various different platforms presents a foundation for the platform-independent creation of generative building blocks. This approach significantly reduces the effort for implementing and maintaining generative description for different platforms.Building up on previous work on finding the best generative description of one or several given instances of an object class, an application to analyze digitized objects in terms of changes and damages is presented. The system automatically combines generative descriptions with reconstructed objects and performs a nominal/actual value comparison. By applying the variances of the reconstructed objects to a different parameter set of the generative description, new shapes can be created. With this novel approach, the design of shapes using both low-level details and high-level shape parameters is possible.The last step in the context of shape processing is concerned with visualization systems for humans to perceive and interact with shapes. In this context, a novel method to project a coherent, seamless and perspectively corrected image from one particular viewpoint using an arbitrary number of projectors is presented. The approach distinguishes itself by being quick and efficient. The last contribution to this topic is describing an optimized stereoscopic display based on parallax barriers for a driving simulator.

    KW - Shape

    KW - Shape Modeling

    KW - Euclides

    KW - Modeling

    KW - Generative Modeling

    KW - Inverse Modeling

    KW - Visualization

    M3 - Doctoral Thesis

    ER -