Segmentation-Based Near-Lossless Compression of Multi-View Cultural Heritage Image Data

Maximilian von Bülow, Reimar Tausch, Volker Knauthe, Tristan Wirth, Stefan Guthe, Pedro Santos, Dieter W. Fellner

Publikation: Beitrag in Buch/Bericht/KonferenzbandBeitrag in einem Konferenzband

Abstract

Cultural heritage preservation using photometric approaches received increasing significance in the past years. Capturing of these datasets is usually done with high-end cameras at maximum image resolution enabling high quality reconstruction results while leading to immense storage consumptions. In order to maintain archives of these datasets, compression is mandatory for storing them at reasonable cost. In this paper, we make use of the mostly static background of the capturing environment that does not directly contribute information to 3d reconstruction algorithms and therefore may be approximated using lossy techniques. We use a superpixel and figure-ground segmentation based near-lossless image compression algorithm that transparently decides if regions are relevant for later photometric reconstructions. This makes sure that the actual artifact or structured background parts are compressed with lossless techniques. Our algorithm achieves compression rates compared to the PNG image compression standard ranging from 1:2 to 1:4 depending on the artifact size.
Originalspracheenglisch
TitelEurographics Workshop on Graphics and Cultural Heritage (GCH 2020)
Redakteure/-innenMichela Spagnuolo, Francisco Javier Melero
Herausgeber (Verlag)Eurographics - European Association for Computer Graphics
Seiten71-77
Seitenumfang7
ISBN (Print)978-3-03868-110-6
DOIs
PublikationsstatusVeröffentlicht - 2020

Fields of Expertise

  • Information, Communication & Computing

Fingerprint

Untersuchen Sie die Forschungsthemen von „Segmentation-Based Near-Lossless Compression of Multi-View Cultural Heritage Image Data“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren