Robust and Numerically Efficient Estimation of Vehicle Mass and Road Grade

Paul Karoshi, Markus Ager, Martin Schabauer, Cornelia Lex

Publikation: Beitrag in Buch/Bericht/KonferenzbandBeitrag in einem Konferenzband

Abstract

A recursive least squares (RLS) based observer for simultaneous estimation of vehicle mass and road grade, using longitudinal vehicle dynamics, is presented. In order to achieve robustness to unknown disturbances and varying parameters, depth is chosen in a sufficient way. This is done with a sensitivity analysis, identifying parameters with significant influence on the estimation result. The identification of vehicle parameters is presented in detail. The method is validated with an All-Electric Vehicle (AEV) using natural driving cycles. The results show little deviation between estimation and reference, as well as good convergence in urban areas, providing sufficient excitation. However, on highway roads, environmental influences like wind and slipstream of trucks, worsen the results, especially in combination with little excitation for the observer.
Originalspracheenglisch
TitelAdvanced Microsystems for Automotive Applications 2017
UntertitelSmart Systems Transforming the Automobile
Redakteure/-innenCarolin Zachäus, Beate Müller, Gereon Meyer
Herausgeber (Verlag)Springer Verlag
Seiten87-100
Seitenumfang14
Auflage1
ISBN (elektronisch)978-3-319-66972-4
ISBN (Print)978-3-319-66971-7
DOIs
PublikationsstatusVeröffentlicht - 31 Aug 2017
VeranstaltungAdvanced Microsystems for Automotive Applications - Berlin, Deutschland
Dauer: 25 Sep 201726 Sep 2017

Publikationsreihe

NameLecture Notes in Mobility
Herausgeber (Verlag)Springer
ISSN (Print)2196-5544
ISSN (elektronisch)2196-5552

Konferenz

KonferenzAdvanced Microsystems for Automotive Applications
KurztitelAMAA
LandDeutschland
OrtBerlin
Zeitraum25/09/1726/09/17

Schlagwörter

  • Mass estimation
  • Road grade estimation
  • Vehicle state estimation
  • Recursive least squares with forgetting

ASJC Scopus subject areas

  • Fahrzeugbau
  • !!Control and Optimization

Fields of Expertise

  • Mobility & Production

Treatment code (Nähere Zuordnung)

  • Theoretical
  • Experimental
  • Application

Fingerprint

Untersuchen Sie die Forschungsthemen von „Robust and Numerically Efficient Estimation of Vehicle Mass and Road Grade“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren