Regularization of Building Boundaries in Satellite Images Using Adversarial and Regularized Losses

Publikation: Beitrag in Buch/Bericht/KonferenzbandBeitrag in einem Konferenzband


In this paper we present a method for building boundary re-finement and regularization in satellite images using a fullyconvolutional neural network trained with a combination ofadversarial and regularized losses. Compared to a pure MaskR-CNN model, the overall algorithm can achieve equivalentperformance in terms of accuracy and completeness. How-ever, unlike Mask R-CNN that produces irregular footprints,our framework generates regularized and visually pleasingbuilding boundaries which are beneficial in many applica-tions.
TitelIGARSS 2019
Herausgeber (Verlag)IEEE Publications
PublikationsstatusVeröffentlicht - 1 Jul 2019

Dieses zitieren