Regressing Heatmaps for Multiple Landmark Localization Using CNNs

Christian Payer, Darko Stern, Horst Bischof, Martin Urschler

Publikation: Beitrag in Buch/Bericht/KonferenzbandBeitrag in Buch/Bericht

Abstract

We explore the applicability of deep convolutional neural networks (CNNs) for multiple landmark localization in medical image data. Exploiting the idea of regressing heatmaps for individual landmark locations, we investigate several fully convolutional 2D and 3D CNN architectures by training them in an end-to-end manner. We further propose a novel SpatialConfiguration-Net architecture that effectively combines accurate local appearance responses with spatial landmark configurations that model anatomical variation. Evaluation of our different architectures on 2D and 3D hand image datasets show that heatmap regression based on CNNs achieves state-of-the-art landmark localization performance, with SpatialConfiguration-Net being robust even in case of limited amounts of training data.
Originalspracheenglisch
TitelMedical Image Computing and Computer-Assisted Intervention – MICCAI 2016
Untertitel19th International Conference, Athens, Greece, October 17-21, 2016, Proceedings, Part II
Redakteure/-innenSebastien Ourselin, Leo Joskowicz, Mert R. Sabuncu, Gozde Unal, William Wells
Herausgeber (Verlag)Springer International Publishing AG
Seiten230-238
Seitenumfang9
Band9901
ISBN (elektronisch)978-3-319-46723-8
ISBN (Print)978-3-319-46722-1
DOIs
PublikationsstatusVeröffentlicht - 21 Okt 2016
Veranstaltung19th International Conference on Medical Image Computing & Computer Assisted Intervention: MICCAI 2016 - Intercontinental Athenaeum, Athens, Griechenland
Dauer: 17 Okt 201621 Okt 2016
http://www.miccai2016.org

Publikationsreihe

NameLecture Notes in Computer Science
Herausgeber (Verlag)Springer

Konferenz

Konferenz19th International Conference on Medical Image Computing & Computer Assisted Intervention
KurztitelMICCAI
LandGriechenland
OrtAthens
Zeitraum17/10/1621/10/16
Internetadresse

Fields of Expertise

  • Information, Communication & Computing

Kooperationen

  • BioTechMed-Graz

Fingerprint

Untersuchen Sie die Forschungsthemen von „Regressing Heatmaps for Multiple Landmark Localization Using CNNs“. Zusammen bilden sie einen einzigartigen Fingerprint.
  • Student Travel Award

    Christian Payer (Empfänger/-in), 2016

    Auszeichnung: Preise / Medaillen / Ehrungen

Dieses zitieren