Rapid Low-Dimensional Li+Ion Hopping Processes in Synthetic Hectorite-Type Li0.5[Mg2.5Li0.5]Si4O10F2

Caroline Hiebl, Patrick Loch, Marina Brinek, Maria Gombotz, Bernhard Gadermaier, Paul Heitjans, Josef Breu, H. Martin R. Wilkening*

*Korrespondierende/r Autor/-in für diese Arbeit

Publikation: Beitrag in einer FachzeitschriftArtikelBegutachtung

Abstract

Understanding the origins of fast ion transport in solids is important to develop new ionic conductors for batteries and sensors. Nature offers a rich assortment of rather inspiring structures to elucidate these origins. In particular, layer-structured materials are prone to show facile Li+ transport along their inner surfaces. Here, synthetic hectorite-type Li0.5[Mg2.5Li0.5]Si4O10F2, being a phyllosilicate, served as a model substance to investigate Li+ translational ion dynamics by both broadband conductivity spectroscopy and diffusion-induced 7Li nuclear magnetic resonance (NMR) spin-lattice relaxation experiments. It turned out that conductivity spectroscopy, electric modulus data, and NMR are indeed able to detect a rapid 2D Li+ exchange process governed by an activation energy as low as 0.35 eV. At room temperature, the bulk conductivity turned out to be in the order of 0.1 mS cm-1. Thus, the silicate represents a promising starting point for further improvements by crystal chemical engineering. To the best of our knowledge, such a high Li+ ionic conductivity has not been observed for any silicate yet.

Originalspracheenglisch
Seiten (von - bis)7445-7457
Seitenumfang13
FachzeitschriftChemistry of Materials
Jahrgang32
Ausgabenummer17
DOIs
PublikationsstatusVeröffentlicht - 8 Sept. 2020

ASJC Scopus subject areas

  • Chemie (insg.)
  • Chemische Verfahrenstechnik (insg.)
  • Werkstoffchemie

Fingerprint

Untersuchen Sie die Forschungsthemen von „Rapid Low-Dimensional Li+Ion Hopping Processes in Synthetic Hectorite-Type Li0.5[Mg2.5Li0.5]Si4O10F2“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren