Quasi-geometric integration of guiding-center orbits in piecewise linear toroidal fields

Michael Eder*, Lukas Maximilian Peter Bauer, Winfried Kernbichler, Sergei Kasilov, Christopher G. Albert

*Korrespondierende/r Autor/in für diese Arbeit

Publikation: Beitrag in einer FachzeitschriftArtikel

Abstract

A numerical integration method for guiding-center orbits of charged particles in toroidal fusion devices with three-dimensional field geometry is described. Here, high order interpolation of electromagnetic fields in space is replaced by a special linear interpolation, leading to locally linear Hamiltonian equations of motion with piecewise constant coefficients. This approach reduces computational effort and noise sensitivity, while the conservation of total energy, magnetic moment and phase space volume is retained. The underlying formulation treats motion in piecewise linear fields exactly and, thus, preserves the non-canonical symplectic form. The algorithm itself is only quasi-geometric due to a series expansion in the orbit parameter. For practical purposes, an expansion to the fourth order retains geometric properties down to computer accuracy in typical examples. When applied to collisionless guiding-center orbits in an axisymmetric tokamak and a realistic three-dimensional stellarator configuration, the method demonstrates stable long-term orbit dynamics conserving invariants. In Monte Carlo evaluation of transport coefficients, the computational efficiency of quasi-geometric integration is an order of magnitude higher than with a standard fourth order Runge–Kutta integrator.
Originalspracheenglisch
Aufsatznummer122508
FachzeitschriftPhysics of Plasmas
Jahrgang27
Ausgabenummer12
DOIs
PublikationsstatusVeröffentlicht - Dez 2020

ASJC Scopus subject areas

  • !!Condensed Matter Physics

Fingerprint Untersuchen Sie die Forschungsthemen von „Quasi-geometric integration of guiding-center orbits in piecewise linear toroidal fields“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren