Proton Bulk Diffusion in Cubic Li7La3Zr2O12 Garnets as Probed by Single X-ray Diffraction

C. Hiebl, D. Young, Reinhard Wagner, H. M.R. Wilkening, G. J. Redhammer*, D. Rettenwander

*Korrespondierende/r Autor/-in für diese Arbeit

Publikation: Beitrag in einer FachzeitschriftArtikelBegutachtung

Abstract

Ceramic electrolytes, characterized by a very high ionic conductivity as it is the case for Al-stabilized cubic Li7La3Zr2O12 (Al:LLZO), are of utmost interest to develop next-generation batteries that can efficiently store electrical energy from renewable sources. If envisaged not as a solid electrolyte but as a protecting layer in lithium-metal batteries with liquid electrolytes, the ceramic should allow Li+ to pass through but block out other species such as H+. Protons, for example, originating from the decomposition of electrolyte solvent molecules, will form detrimental LiH that severely affects the performance and lifetime of such batteries. Although Li-ion dynamics in Al:LLZO has been the topic of many studies, until today, little information is available about macroscopic proton diffusion in LLZO. Here, we used single-crystal X-ray diffraction to study the Li+/H+ exchange rate in AL:LLZO over a period of about 3 years. Rietveld refinements reveal that H solely exchanges on the 96h site. The Li/H portion significantly changes from the anhydrous pristine sample to Li4.21:H0.66 after 17 days of altering in humid air and finally to Li2.55:H2.32 after 960 days. Considering the change of the Li/H portion and the probing depth of X-rays into Al:LLZO, we applied a spherical diffusion model to estimate the proton diffusion coefficient of D0 ≈ 10-17 m2 s-1. Such a proton diffusion coefficient value is sufficiently high to have significant impact on cell performance and safety if Al:LLZO is going to be used to protect the Li-metal anode from reaction with the liquid electrolyte. In particular, during Li plating, such a high H+ penetration rate may accelerate the formation of LiH, giving rise to safety problems of these types of batteries.

Originalspracheenglisch
Seiten (von - bis)1094-1098
Seitenumfang5
FachzeitschriftThe Journal of Physical Chemistry C
Jahrgang123
Ausgabenummer2
DOIs
PublikationsstatusVeröffentlicht - 2019

ASJC Scopus subject areas

  • Elektronische, optische und magnetische Materialien
  • Energie (insg.)
  • Physikalische und Theoretische Chemie
  • Oberflächen, Beschichtungen und Folien

Fingerprint

Untersuchen Sie die Forschungsthemen von „Proton Bulk Diffusion in Cubic Li7La3Zr2O12 Garnets as Probed by Single X-ray Diffraction“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren