Production matrices for geometric graphs

Clemens Huemer, Carlos Seara, Rodrigo I. Silveira, Alexander Pilz

Publikation: Beitrag in einer FachzeitschriftArtikel

Abstract

We present production matrices for non-crossing geometric graphs on point sets in convex position, which allow us to derive formulas for the numbers of such graphs. Several known identities for Catalan numbers, Ballot numbers, and Fibonacci numbers arise in a natural way, and also new formulas are obtained, such as a formula for the number of non-crossing geometric graphs with root vertex of given degree. The characteristic polynomials of some of these production matrices are also presented. The proofs make use of generating trees and Riordan arrays.

Originalspracheenglisch
Seiten (von - bis)301-306
Seitenumfang6
FachzeitschriftElectronic Notes in Discrete Mathematics
Jahrgang54
DOIs
PublikationsstatusVeröffentlicht - 1 Okt 2016
Extern publiziertJa

ASJC Scopus subject areas

  • !!Discrete Mathematics and Combinatorics
  • Angewandte Mathematik

Fingerprint Untersuchen Sie die Forschungsthemen von „Production matrices for geometric graphs“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren