Planarity and genus of sparse random bipartite graphs

Publikation: Beitrag in einer FachzeitschriftArtikelBegutachtung

Abstract

The genus of the binomial random graph G(n, p) is well understood for a wide range of p = p(n). Recently, the study of the genus of the random bipartite graph G(n 1, n 2, p), with partition classes of size n 1 and n 2, was initiated by Mohar and Jing, who showed that when n 1 and n 2 are comparable in size and p = p(n 1, n 2) is significantly larger than (n 1n 2) 1/2 the genus of the random bipartite graph has a similar behavior to that of the binomial random graph. In this paper we show that there is a threshold for planarity of the random bipartite graph at p = (n 1n 2) 1/2 and investigate the genus close to this threshold, extending the results of Mohar and Jing. It turns out that there is qualitatively different behavior in the case where n 1 and n 2 are comparable, when with high probability (whp) the genus is linear in the number of edges, than in the case where n 1 is asymptotically smaller than n 2, when whp the genus behaves like the genus of a sparse random graph G(n 1, q) for an appropriately chosen q = q(p, n 1, n 2).

Originalspracheenglisch
Seiten (von - bis)1394-1415
Seitenumfang22
FachzeitschriftSIAM Journal on Discrete Mathematics
Jahrgang36
Ausgabenummer2
DOIs
PublikationsstatusVeröffentlicht - 13 Juni 2022

ASJC Scopus subject areas

  • Mathematik (insg.)

Fingerprint

Untersuchen Sie die Forschungsthemen von „Planarity and genus of sparse random bipartite graphs“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren