Persistent homology and materials informatics

Mickaël Buchet, Yasuaki Hiraoka, Ippei Obayashi

Publikation: Beitrag in Buch/Bericht/KonferenzbandBeitrag in Buch/BerichtForschungBegutachtung

Abstract

This paper provides an introduction to persistent homology and a survey of its applications to materials science. Mathematical prerequisites are limited to elementary linear algebra. Important concepts in topological data analysis such as persistent homology and persistence diagram are explained in a selfcontained manner with several examples. These tools are applied to glass structural analysis, crystallization of granular systems, and craze formation of polymers.

Originalspracheenglisch
TitelNanoinformatics
Redakteure/-innenI. Tanaka
ErscheinungsortSingapur
Herausgeber (Verlag)Springer Science+Business Media Singapore Private Limited
Seiten75-95
Seitenumfang21
ISBN (elektronisch)9789811076176
ISBN (Print)9789811076169
DOIs
PublikationsstatusVeröffentlicht - 15 Jan 2018
Extern publiziertJa

Fingerprint

Informatics
Linear algebra
Materials science
Crystallization
Structural analysis
Glass
Polymers
Surveys and Questionnaires

Schlagwörter

    ASJC Scopus subject areas

    • !!Engineering(all)
    • !!Chemistry(all)
    • !!Biochemistry, Genetics and Molecular Biology(all)
    • !!Materials Science(all)

    Dies zitieren

    Buchet, M., Hiraoka, Y., & Obayashi, I. (2018). Persistent homology and materials informatics. in I. Tanaka (Hrsg.), Nanoinformatics (S. 75-95). Singapur: Springer Science+Business Media Singapore Private Limited. https://doi.org/10.1007/978-981-10-7617-6_5

    Persistent homology and materials informatics. / Buchet, Mickaël; Hiraoka, Yasuaki; Obayashi, Ippei.

    Nanoinformatics. Hrsg. / I. Tanaka. Singapur : Springer Science+Business Media Singapore Private Limited, 2018. S. 75-95.

    Publikation: Beitrag in Buch/Bericht/KonferenzbandBeitrag in Buch/BerichtForschungBegutachtung

    Buchet, M, Hiraoka, Y & Obayashi, I 2018, Persistent homology and materials informatics. in I Tanaka (Hrsg.), Nanoinformatics. Springer Science+Business Media Singapore Private Limited, Singapur, S. 75-95. https://doi.org/10.1007/978-981-10-7617-6_5
    Buchet M, Hiraoka Y, Obayashi I. Persistent homology and materials informatics. in Tanaka I, Hrsg., Nanoinformatics. Singapur: Springer Science+Business Media Singapore Private Limited. 2018. S. 75-95 https://doi.org/10.1007/978-981-10-7617-6_5
    Buchet, Mickaël ; Hiraoka, Yasuaki ; Obayashi, Ippei. / Persistent homology and materials informatics. Nanoinformatics. Hrsg. / I. Tanaka. Singapur : Springer Science+Business Media Singapore Private Limited, 2018. S. 75-95
    @inbook{cf7a8af65c754f6dba183455b5006077,
    title = "Persistent homology and materials informatics",
    abstract = "This paper provides an introduction to persistent homology and a survey of its applications to materials science. Mathematical prerequisites are limited to elementary linear algebra. Important concepts in topological data analysis such as persistent homology and persistence diagram are explained in a selfcontained manner with several examples. These tools are applied to glass structural analysis, crystallization of granular systems, and craze formation of polymers.",
    keywords = "Materials informatics, Persistent homology, Topological data analysis",
    author = "Micka{\"e}l Buchet and Yasuaki Hiraoka and Ippei Obayashi",
    year = "2018",
    month = "1",
    day = "15",
    doi = "10.1007/978-981-10-7617-6_5",
    language = "English",
    isbn = "9789811076169",
    pages = "75--95",
    editor = "I. Tanaka",
    booktitle = "Nanoinformatics",
    publisher = "Springer Science+Business Media Singapore Private Limited",
    address = "Singapore",

    }

    TY - CHAP

    T1 - Persistent homology and materials informatics

    AU - Buchet, Mickaël

    AU - Hiraoka, Yasuaki

    AU - Obayashi, Ippei

    PY - 2018/1/15

    Y1 - 2018/1/15

    N2 - This paper provides an introduction to persistent homology and a survey of its applications to materials science. Mathematical prerequisites are limited to elementary linear algebra. Important concepts in topological data analysis such as persistent homology and persistence diagram are explained in a selfcontained manner with several examples. These tools are applied to glass structural analysis, crystallization of granular systems, and craze formation of polymers.

    AB - This paper provides an introduction to persistent homology and a survey of its applications to materials science. Mathematical prerequisites are limited to elementary linear algebra. Important concepts in topological data analysis such as persistent homology and persistence diagram are explained in a selfcontained manner with several examples. These tools are applied to glass structural analysis, crystallization of granular systems, and craze formation of polymers.

    KW - Materials informatics

    KW - Persistent homology

    KW - Topological data analysis

    UR - http://www.scopus.com/inward/record.url?scp=85045570521&partnerID=8YFLogxK

    U2 - 10.1007/978-981-10-7617-6_5

    DO - 10.1007/978-981-10-7617-6_5

    M3 - Chapter

    SN - 9789811076169

    SP - 75

    EP - 95

    BT - Nanoinformatics

    A2 - Tanaka, I.

    PB - Springer Science+Business Media Singapore Private Limited

    CY - Singapur

    ER -