Perfect $k$-Colored Matchings and $(k+2)$-Gonal Tilings

Publikation: Beitrag in einer FachzeitschriftArtikel

Abstract

We derive a simple bijection between geometric plane perfect matchings on $2n$ points in convex position and triangulations on $n+2$ points in convex position. We then extend this bijection to monochromatic plane perfect matchings on periodically $k$-colored vertices and $(k+2)$-gonal tilings of convex point sets. These structures are related to a generalization of Temperley–Lieb algebras and our bijections provide explicit one-to-one relations between matchings and tilings. Moreover, for a given element of one class, the corresponding element of the other class can be computed in linear time.
Originalspracheenglisch
Seiten (von - bis)1333-1346
Seitenumfang14
FachzeitschriftGraphs and combinatorics
Jahrgang34
Ausgabenummer6
DOIs
PublikationsstatusVeröffentlicht - 2018

Dieses zitieren