Abstract
Originalsprache | englisch |
---|---|
Titel | Proceedings of the Hungarian Association for Image Processing and Pattern Recognition (KEPAF) |
Herausgeber (Verlag) | . |
Publikationsstatus | Veröffentlicht - 2013 |
Fingerprint
Fields of Expertise
- Information, Communication & Computing
Dies zitieren
Pedestrian Detection, Tracking and Re-Identification for Search in Visual Surveillance Data. / Beleznai, Csaba; Rauter, Michael; Hirzer, Martin; Roth, Peter M.
Proceedings of the Hungarian Association for Image Processing and Pattern Recognition (KEPAF). ., 2013.Publikation: Beitrag in Buch/Bericht/Konferenzband › Beitrag in einem Konferenzband › Forschung › Begutachtung
}
TY - GEN
T1 - Pedestrian Detection, Tracking and Re-Identification for Search in Visual Surveillance Data
AU - Beleznai, Csaba
AU - Rauter, Michael
AU - Hirzer, Martin
AU - Roth, Peter M.
PY - 2013
Y1 - 2013
N2 - Visual surveillance data might encompass vast data amounts. Given the amount of data the need for search and data exploration arises naturally. Various authorities such as infrastructure operators and law enforcement agencies are confronted with search needs based on a visual description and/or behavioral patterns (motion path, activity) in order to find a ”needle in a haystack of digital data”. In this paper we present a framework which allows for an efficient search in visual surveillance archives. The paper describes following core algorithmic components of the search framework: Human detection employing pedestrian-specific shape and motion cues along with occlusion modelling; Tracking of multiple interacting pedestrians using a hierarchical spatio-temporal association scheme. Finally, pedestrian re-identification is demonstrated based on appearance matching in order to recognize a given person across a network of spatially disjoint cameras. We present results for the detection, tracking and re-identification subtasks on various challenging datasets and describe the overall framework in detail.
AB - Visual surveillance data might encompass vast data amounts. Given the amount of data the need for search and data exploration arises naturally. Various authorities such as infrastructure operators and law enforcement agencies are confronted with search needs based on a visual description and/or behavioral patterns (motion path, activity) in order to find a ”needle in a haystack of digital data”. In this paper we present a framework which allows for an efficient search in visual surveillance archives. The paper describes following core algorithmic components of the search framework: Human detection employing pedestrian-specific shape and motion cues along with occlusion modelling; Tracking of multiple interacting pedestrians using a hierarchical spatio-temporal association scheme. Finally, pedestrian re-identification is demonstrated based on appearance matching in order to recognize a given person across a network of spatially disjoint cameras. We present results for the detection, tracking and re-identification subtasks on various challenging datasets and describe the overall framework in detail.
M3 - Conference contribution
BT - Proceedings of the Hungarian Association for Image Processing and Pattern Recognition (KEPAF)
PB - .
ER -