Optimized series of rainfall events for model based assessment of combinded sewer system

Johannes Leimgruber, David Steffelbauer, Matthias Kaschutnig, Franz Tscheikner-Gratl, Dirk Muschalla

Publikation: Beitrag in Buch/Bericht/KonferenzbandBeitrag in einem Konferenzband

Abstract

Often, two different models are provided for the same sewer system, namely a hydrodynamic model for the hydraulic verification and a conceptual model for the verification of compliance with standards for combined sewer overflows (CSO). However, a combined verification using only one model has many advantages. For the necessary calculation of water levels for the hydraulic verification, only hydrodynamic models are applicable. Consequently, a hydrodynamic model has to be used for a combined verification if the same model should be used for both applications.
Often, the verification and assessment of CSOs asks for long-term simulation. The use of hydrodynamic models in combination with continuous simulation of a couple of years up to several decades regularly leads to unacceptable high computation times. As an alternative, a series of rainfall events can be used for the simulations instead of the precipitation continuum leading to dramatically reduced computational times.
This paper introduces a method to generate such a series of rainfall events. This series is optimized to match the overflow volumes of the continuous simulation and to reduce the overall computation time of the series simulation.
Originalspracheenglisch
TitelConference proceedings Novatech 2016
PublikationsstatusVeröffentlicht - 2016
Veranstaltung9th International Conference NOVATECH 2016: Planning & technologies for sustainable urban water management - INSA Lyon, Lyon, Frankreich
Dauer: 28 Jun 20161 Jul 2016
https://www.novatech.graie.org

Konferenz

Konferenz9th International Conference NOVATECH 2016
KurztitelNOVATECH 2016
LandFrankreich
OrtLyon
Zeitraum28/06/161/07/16
Internetadresse

Fields of Expertise

  • Sustainable Systems

Fingerprint Untersuchen Sie die Forschungsthemen von „Optimized series of rainfall events for model based assessment of combinded sewer system“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren