On the Factorization of Non-Commutative Polynomials (in Free Associative Algebras)

Konrad Schrempf

Publikation: Beitrag in einer FachzeitschriftArtikel

Abstract

We describe a simple approach to factorize non-commutative (nc) polynomials, that is, elements in free associative algebras (over a commutative field), into atoms (irreducible elements) based on (a special form of) their minimal linear representations. To be more specific, a correspondence between factorizations of an element and upper right blocks of zeros in the system matrix (of its representation) is established. The problem is then reduced to solving a system of polynomial equations (with at most quadratic terms) with commuting unknowns to compute appropriate transformation matrices (if possible).
Originalspracheenglisch
Seiten (von - bis)1-22
Seitenumfang22
FachzeitschriftarXiv.org e-Print archive
PublikationsstatusVeröffentlicht - 6 Jun 2017

Schlagwörter

  • math.RA
  • 16K40, 16Z05 (Primary), 16G99, 16S10 (Secondary)

Fingerprint Untersuchen Sie die Forschungsthemen von „On the Factorization of Non-Commutative Polynomials (in Free Associative Algebras)“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren